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1 Introduction

Matlab is a prototyping environment, meaning it focuses on the ease of development with language
flexibility, interactive debugging, and other conveniences lacking in performance-oriented languages like
C and Fortran. While Matlab may not be as fast as C, there are ways to bring it closer.

Disclaimer This is not a beginner’s tutorial to Matlab, but a tutorial on
performance. The methods discussed here are generally fast, but no claim is
made on what is fastest. Use at your own risk.

Before beginning our main topic, let’s step back for a moment and ask ourselves what we really want. Do
we want the fastest possible code?—if so, we should switch to a performance language like C. Probably
more accurately, we want to spend less time total from developing, debugging, running, and until finally
obtaining results. This section gives some tips on working smart, not hard.

M-Lint Messages

In more recent versions of Matlab, the integrated editor automatically gives feedback on possible code
errors and suggested optimizations. These messages are helpful in improving a program and in learning
more about Matlab.

for k = 1:NumTrials

r = rand;

x(k) = runsim(r);

end

hist(x); % Plot histogram of simulation outputs

pxp might be growing inside a loop. Consider preallocating for speed.

Hold the mouse cursor over
:::::::::::::::
underlined code to read a message. Or, see all M-Lint messages at once

with Tools → M-Lint → Show M-Lint Report.

Organization

� Use a separate folder for each project.

A separate folder for each project keeps related things together and simplifies making copies and
backups of project files.

� Write header comments, especially H1.

The first line of the header comment is called the H1 comment. Type help(cd) to get a listing
of all project files and their H1 comments.
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� Save frequent console commands as a script.

If you find yourself repeating certain commands on the console, save them as a script. Less typing
means fewer opportunities for typos.

Avoid losing data

� Don’t use clear all in a script.

This is an unfortunate common practice—any important variables in the base workspace will be
irretrievably lost.

� Beware of clobber.

“File clobber” refers to the kind of data loss when a file is accidentally overwritten with another
one having the same filename. This phenomenon can occur with variables as well:

>> result = big operation(input1); % Store the result of a time−consuming operation

...

>> result = big operation(input2); % Run again with another input

Variable result was clobbered and the first output was lost.

� Beware of what can crash MATLAB.

While Matlab is generally reliable, crashes are possible when using third-party MEX functions
or extremely memory-intensive operations, for example, with video and very large arrays.

Now with good working habits covered, we begin our discussion of writing fast Matlab code. The rest
of this article is organized by topic, first on techniques that are useful in general application, and next
on specific computational topics (table of contents is on the first page).

2



2 The Profiler

Matlab 5.0 (R10) and newer versions include a tool called the profiler that helps identify bottlenecks
in a program. Use it with the profile command:

profile on Turn the profiler on
profile off Turn it back off
profile clear Clear profile statistics
profile report View the results from the profiler

For example, consider profiling the following function:

function result = example1(Count)

for k = 1:Count

result(k) = sin(k/50);

if result(k) < −0.9
result(k) = gammaln(k);

end

end

To analyze the efficiency this function, first enable and clear the profiler, run the function, and then
view the profile report:

>> profile on, profile clear

>> example1(5000);

>> profile report

There is a slight parsing overhead when running code for the first time; run the test code twice and time
the second run. The profiler report command shows a report. Depending on the system, profiler
results may differ from this example.

MATLAB Profile Report: Summary
Report generated 30-Jul-2004 16:57:01

Total recorded time: 3.09 s

Number of M-functions: 4

Clock precision: 0.016 s
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Function List

Name Time Time Time/call Self time Location

example1 3.09 100.0% 1 3.094000 2.36 76.3% ~/example1.m

gammaln 0.73 23.7% 3562 0.000206 0.73 23.7% ../toolbox/matlab/specfun/gammaln.m

profile 0.00 0.0% 1 0.000000 0.00 0.0% ../toolbox/matlab/general/profile.m

profreport 0.00 0.0% 1 0.000000 0.00 0.0% ../toolbox/matlab/general/profreport.m

Clicking the “example1” link gives more details:

Lines where the most time was spent

Line Number Code Calls Total Time % Time

4 result(k) = sin(k/50); 5000 2.11 s 68%
7 result(k) = gammaln(k); 721 0.84 s 27%
6 if result(k) < -0.9 5000 0.14 s 5%
Totals 3.09 s 100%

The most time-consuming lines are displayed, along with time, time percentage, and line number. The
most costly lines are the computations on lines 4 and 7.

Another helpful section of the profile report is “M-Lint Results,” which gives feedback from the M-Lint
code analyzer. Possible errors and suggestions are listed here.

M-Lint results
Line number Message

4 ‘result’ might be growing inside a loop. Consider preallocating for speed.

7 ‘result’ might be growing inside a loop. Consider preallocating for speed.

(Preallocation is discussed in the next section.)

The profiler has limited time resolution, so to profile a piece of code that runs too quickly, run the test
code multiple times with a loop. Adjust the number of loop iterations so that the time it takes to run
is noticeable. More iterations yields better time resolution.

The profiler is an essential tool for identifying bottlenecks and per-statement analysis, however, for
more accurate timing of a piece of code, use the tic/toc stopwatch timer.

>> tic; example1(5000); toc;

Elapsed time is 3.082055 seconds

For serious benchmarking, also close your web browser, anti-virus, and other background processes that
may be taking CPU cycles.
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3 Array Preallocation

Matlab’s matrix variables have the ability to dynamically augment rows and columns. For example,

>> a = 2

a =

2

>> a(2,6) = 1

a =

2 0 0 0 0 0

0 0 0 0 0 1

Matlab automatically resizes the matrix. Internally, the matrix data memory must be reallocated
with larger size. If a matrix is resized repeatedly—like within a loop—this overhead can be significant.
To avoid frequent reallocations, preallocate the matrix with the zeros command.
Consider the code:

a(1) = 1;

b(1) = 0;

for k = 2:8000

a(k) = 0.99803 * a(k − 1) − 0.06279 * b(k − 1);

b(k) = 0.06279 * a(k − 1) + 0.99803 * b(k − 1);

end

This code takes 0.47 seconds to run. After the for loop, both arrays are row vectors of length 8000,
thus to preallocate, create empty a and b row vectors each with 8000 elements.

a = zeros(1,8000); % Preallocation

b = zeros(1,8000);

a(1) = 1;

b(1) = 0;

for k = 2:8000

a(k) = 0.99803 * a(k − 1) − 0.06279 * b(k − 1);

b(k) = 0.06279 * a(k − 1) + 0.99803 * b(k − 1);

end

With this modification, the code takes only 0.14 seconds (over three times faster). Preallocation is often
easy to do, in this case it was only necessary to determine the right preallocation size and add two lines.
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What if the final array size can vary? Here is an example:

a = zeros(1,10000); % Preallocate

count = 0;

for k = 1:10000

v = exp(rand*rand);

if v > 0.5 % Conditionally add to array

count = count + 1;

a(count) = v;

end

end

a = a(1:count); % Trim extra zeros from the results

The average run time of this program is 0.42 seconds without preallocation and 0.18 seconds with it.

Preallocation is also beneficial for cell arrays, using the cell command to create a cell array of the
desired size.
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4 JIT Acceleration

Matlab 6.5 (R13) and later feature the Just-In-Time (JIT) Accelerator for improving the speed of
M-functions, particularly with loops. By knowing a few things about the accelerator, you can improve
its performance.

The JIT Accelerator is enabled by default. To disable it, type “feature accel off” in the console,
and “feature accel on” to enable it again.

As of Matlab R2008b, only a subset of the Matlab language is supported for acceleration. Upon
encountering an unsupported feature, acceleration processing falls back to non-accelerated evaluation.
Acceleration is most effective when significant contiguous portions of code are supported.

� Data types: Code must use supported data types for acceleration: double (both real and
complex), logical, char, int8–32, uint8–32. Some struct, cell, classdef, and function
handle usage is supported. Sparse arrays are not accelerated.

� Array shapes: Array shapes of any size with 3 or fewer dimensions are supported. Changing the
shape or data type of an array interrupts acceleration. A few limited situations with 4D arrays
are accelerated.

� Function calls: Calls to built-in functions and M-functions are accelerated. Calling MEX func-
tions and Java interrupts acceleration. (See also page 14 on inlining simple functions.)

� Conditionals and loops: The conditional statements if, elseif, and simple switch statements
are supported if the conditional expression evaluates to a scalar. Loops of the form for k=a:b,
for k=a:b:c, and while loops are accelerated if all code within the loop is supported.

In-place computation

Introduced in Matlab 7.3 (R2006b), the element-wise operators (+, .*, etc.) and some other functions
can be computed in-place. That is, a computation like

x = 5*sqrt(x.ˆ2 + 1);

is handled internally without needing temporary storage for accumulating the result. An M-function
can also be computed in-place if its output argument matches one of the input arguments.

x = myfun(x);

function x = myfun(x)

x = 5*sqrt(x.ˆ2 + 1);

return;

To enable in-place computation, the in-place operation must be within an M-function (and for an in-
place function, the function itself must be called within an M-function). Currently, there is no support
for in-place computation with MEX-functions.
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Multithreaded Computation

Matlab 7.4 (R2007a) introduced multithreaded computation for multicore and multiprocessor com-
puters. Multithreaded computation accelerates some per-element functions when applied to large arrays
(for example, .^, sin, exp) and certain linear algebra functions in the BLAS library. To enable it, select
File→ Preferences→ General→Multithreading and select “Enable multithreaded computation.” Fur-
ther control over parallel computation is possible with the Parallel Computing Toolbox� using parfor

and spmd.

JIT-Accelerated Example

For example, the following loop-heavy code is supported for acceleration:

function B = bilateral(A,sd,sr,R)

% The bilateral image denoising filter

B = zeros(size(A));

for i = 1:size(A,1)

for j = 1:size(A,2)

zsum = 0;

for m = −R:R
if i+m >= 1 && i+m <= size(A,1)

for n = −R:R
if j+n >= 1 && j+n <= size(A,2)

z = exp(−(A(i+m,j+n) − A(i,j))ˆ2/(2*sdˆ2))...

* exp(−(mˆ2 + nˆ2)/(2*srˆ2));

zsum = zsum + z;

B(i,j) = B(i,j) + z*A(i+m,j+n);

end

end

end

end

B(i,j) = B(i,j)/zsum;

end

end

For a 128 × 128 input image and R = 3, the run time is 53.3 seconds without acceleration and 0.68
seconds with acceleration.
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5 Vectorization

A computation is vectorized by taking advantage of vector operations. A variety of programming
situations can be vectorized, and often improving speed to 10 times faster or even better. Vectorization
is one of the most general and effective techniques for writing fast M-code.

5.1 Vectorized Computations

Many standard Matlab functions are “vectorized”: they can operate on an array as if the function
had been applied individually to every element.

>> sqrt([1,4;9,16])

ans =

1 2

3 4

>> abs([0,1,2,−5,−6,−7])

ans =

0 1 2 5 6 7

Consider the following function:

function d = minDistance(x,y,z)

% Find the min distance between a set of points and the origin

nPoints = length(x);

d = zeros(nPoints,1); % Preallocate

for k = 1:nPoints % Compute distance for every point

d(k) = sqrt(x(k)ˆ2 + y(k)ˆ2 + z(k)ˆ2);

end

d = min(d); % Get the minimum distance

For every point, its distance from the origin is computed and stored in d. For speed, array d is
preallocated (see Section 3). The minimum distance is then found with min. To vectorize the distance
computation, replace the for loop with vector operations:

function d = minDistance(x,y,z)

% Find the min distance between a set of points and the origin

d = sqrt(x.ˆ2 + y.ˆ2 + z.ˆ2); % Compute distance for every point

d = min(d); % Get the minimum distance

The modified code performs the distance computation with vector operations. The x, y and z arrays
are first squared using the per-element power operator, .^ (the per-element operators for multiplication
and division are .* and ./). The squared components are added with vector addition. Finally, the
square root of the vector sum is computed per element, yielding an array of distances. (A further
improvement: it is equivalent to compute d = sqrt(min(x.^2 + y.^2 + z.^2))).
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The first version of the minDistance program takes 0.73 seconds on 50000 points. The vectorized
version takes less than 0.04 seconds, more than 18 times faster.

Some useful functions for vectorizing computations:
min, max, repmat, meshgrid, sum, cumsum, diff, prod, cumprod, accumarray

5.2 Vectorized Logic

The previous section shows how to vectorize pure computation. But bottleneck code often involves
conditional logic. Like computations, Matlab’s logic operators are vectorized:

>> [1,5,3] < [2,2,4]

ans =

1 0 1

Two arrays are compared per-element. Logic operations return “logical” arrays with binary values.
How is this useful? Matlab has a few powerful functions for operating on logical arrays:

>> find([1,5,3] < [2,2,4]) % Find indices of nonzero elements

ans =

1 3

>> any([1,5,3] < [2,2,4]) % True if any element of a vector is nonzero

% (or per−column for a matrix)

ans =

1

>> all([1,5,3] < [2,2,4]) % True if all elements of a vector are nonzero

% (or per−column for a matrix)

ans =

0

Vectorized logic also works on arrays.

>> find(eye(3) == 1) % Find which elements == 1 in the 3x3 identity matrix

ans =

1 % (element locations given as indices)

5

9

By default, find returns element locations as indices (see page 16 for indices vs. subscripts).

10



Example 1: Vector Normalization

To normalize a single vector v to unit length, one can use v = v/norm(v). However, to use norm for
set of vectors v(:,1), v(:,2), . . . requires computing v(:,k)/norm(v(:,k)) in a loop. Alternatively,

vMag = sqrt(sum(v.ˆ2));

v = v./vMag(ones(1,size(v,1)),:);

Example 2: Removing elements

The situation often arises where array elements must be removed on some per-element condition. For
example, this code removes all NaN and infinite elements from an array x:

i = find(isnan(x) | isinf(x)); % Find bad elements in x

x(i) = []; % and delete them

Alternatively,

i = find(˜isnan(x) & ˜isinf(x)); % Find elements that are not NaN and not infinite

x = x(i); % Keep those elements

Both of these solutions can be further streamlined by using logical indexing:

x(isnan(x) | isinf(x)) = []; % Delete bad elements

or

x = x(˜isnan(x) & ˜isinf(x)); % Keep good elements

Example 3: Piecewise functions

The sinc function has a piecewise definition,

sinc(x) =

{
sin(x)/x, x 6= 0
1, x = 0

This code uses find with vectorized computation to handle the two cases separately:

function y = sinc(x)

% Computes the sinc function per−element for a set of x values.

y = ones(size(x)); % Set y to all ones, sinc(0) = 1

i = find(x ˜= 0); % Find nonzero x values

y(i) = sin(x(i)) ./ x(i); % Compute sinc where x ˜= 0

A concise alternative is y = (sin(x) + (x == 0))./(x + (x == 0)).
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Example 4: Drawing images with meshgrid

The meshgrid function takes two input vectors and converts them to matrices by replicating the first
over the rows and the second over the columns.

>> [x,y] = meshgrid(1:5,1:3)

x =

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

y =

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

The matrices above work like a map for a width 5, height 3 image. For each pixel, the x-location can
be read from x and the y-location from y. This may seem like a gratuitous use of memory as x and y

simply record the column and row positions, but this is useful. For example, to draw an ellipse,

% Create x and y for a width 150, height 100 image

[x,y] = meshgrid(1:150,1:100);

% Ellipse with origin (60,50) of size 15 x 40

Img = sqrt(((x−60).ˆ2 / 15ˆ2) + ((y−50).ˆ2 / 40ˆ2)) > 1;

% Plot the image

imagesc(Img); colormap(copper);

axis image, axis off

Drawing lines is just a change in the formula.

[x,y] = meshgrid(1:150,1:100);

% The line y = x*0.8 + 20

Img = (abs((x*0.8 + 20) − y) > 1);

imagesc(Img); colormap(copper);

axis image, axis off

Polar functions can be drawn by first converting x and y variables with the cart2pol function.

[x,y] = meshgrid(1:150,1:100);

[th,r] = cart2pol(x − 75,y − 50); % Convert to polar

% Spiral centered at (75,50)

Img = sin(r/3 + th);

imagesc(Img); colormap(hot);

axis image, axis off
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Example 5: Polynomial interpolation

Given n points x1, . . . xn and corresponding function values y1, . . . yn, the coefficients c0, . . . , cn−1 of the
interpolating polynomial

P (x) = cn−1x
n−1 + · · ·+ c1x+ c0

can be found by solving
x1
n−1 x1

n−2 · · · x1
2 x1 1

x2
n−1 x2

n−2 · · · x2
2 x2 1

...
...

xn
n−1 xn

n−2 · · · xn
2 xn 1



cn−1

cn−2

...
c0

 =


y1

y2

...
yn



function c = polyint(x,y)

% Given a set of points and function values x and y,

% computes the interpolating polynomial.

x = x(:); % Make sure x and y are both column vectors

y = y(:);

n = length(x); % n = Number of points

% Construct the matrix on the left−hand−side
xMatrix = repmat(x, 1, n); % Make an n by n matrix with x on every column

powMatrix = repmat(n−1:−1:0, n, 1); % Make another n by n matrix of exponents

A = xMatrix .ˆ powMatrix; % Compute the powers

c = A\y; % Solve matrix equation for coefficients

The strategy to construct the left-hand side matrix is to first make two n×n matrices of bases and
exponents and then put them together using the per element power operator, .^ . The repmat function
(“replicate matrix”) is used to make the base matrix xMatrix and the exponent matrix powMatrix.

xMatrix =


x(1) x(1) · · · x(1)
x(2) x(2) · · · x(2)

...
...

x(n) x(n) · · · x(n)

 powMatrix =


n− 1 n− 2 · · · 0

n− 1 n− 2 · · · 0
...

...
n− 1 n− 2 · · · 0


The xMatrix is made by repeating the column vector x over the columns n times. The powMatrix is a
row vector with elements n− 1, n− 2, n− 3, . . . , 0 repeated down the rows n times. The two matrices
could also have been created with [powMatrix, xMatrix] = meshgrid(n-1:-1:0, x).

The code above is only an example—use the standard polyfit function for serious use.
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6 Inlining Simple Functions

Every time an M-file function is called, the Matlab interpreter incurs some overhead. Additionally,
many M-file functions begin with conditional code that checks the input arguments for errors or deter-
mines the mode of operation.

Of course, this overhead is negligible for a single function call. It should only be considered when the
function being called is an M-file, the function itself is “simple,” that is, implemented with only a few
lines, and called frequently from within a loop.

For example, this code calls the M-file function median repeatedly to perform median filtering:

% Apply the median filter of size 5 to signal x

y = zeros(size(x)); % Preallocate

for k = 3:length(x)−2
y(k) = median(x(k−2:k+2));

end

Given a 2500-sample array for x, the overall run time is 0.42 seconds.

“Inlining a function” means to replace a call to the function with the function code itself. Beware that
inlining should not be confused with Matlab’s “inline” function datatype. Studying median.m (type
“edit median” on the console) reveals that most of the work is done using the built-in sort function.
The median call can be inlined as

% Apply the median filter of size 5 to signal x

y = zeros(size(x)); % Preallocate

for k = 3:length(x)−2
tmp = sort(x(k−2:k+2));
y(k) = tmp(3); % y(k) = median(x(k−2:k+2));

end

Now the overall run time is 0.047 seconds, nearly 9 times faster. Furthermore, by inlining median, it
can be specifically tailored to evaluating 5-sample medians. But this is only an example; if the Signal
Processing Toolbox� is available, y = medfilt1(x,5) is much faster.

A surprising number of Matlab’s functions are implemented as M-files, of which many can be inlined
in just a few lines. In Matlab 5.3 (R11), the following functions are worth inlining:
conv, cross, fft2, fliplr, flipud, ifft, ifft2, ifftn, ind2sub, ismember, linspace, logspace,
mean, median, meshgrid, poly, polyval, repmat, roots, rot90, setdiff, setxor, sortrows, std,
sub2ind, union, unique, var
The list above is for Matlab R11; some of these functions have since become built-in. Use the which

command or try “edit function name” to determine whether a function is implemented as an M-file.
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For example, in Matlab R11 and earlier, ifft was implemented by simply calling fft and conj. If x
is a one-dimensional array, y = ifft(x) can be inlined with y = conj(fft(conj(x)))/length(x).

Another example: b = unique(a) can be inlined with

b = sort(a(:)); b( b((1:end−1)') == b((2:end)') ) = [];

While repmat has the generality to operate on matrices, it is often only necessary to tile a vector or
just a scalar. To repeat a column vector y over the columns n times,

A = y(:,ones(1,n)); % Equivalent to A = repmat(y,1,n);

To repeat a row vector x over the rows m times,

A = x(ones(1,m),:); % Equivalent to A = repmat(x,m,1);

To repeat a scalar s into an m×n matrix,

A = s(ones(m,n)); % Equivalent to A = repmat(s,m,n);

This method avoids the overhead of calling an M-file function. It is never slower than repmat (critics
should note that repmat.m itself uses this method to construct mind and nind). For constructing
matrices with constant value, there are other efficient methods, for example, s+zeros(m,n).

Don’t go overboard. Inlining functions is only beneficial when the function is simple and when it is
called frequently. Doing it unnecessarily obfuscates the code.
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7 Referencing Operations

Referencing in Matlab is varied and powerful enough to deserve a section of discussion. Good under-
standing of referencing enables vectorizing a broader range of programming situations.

7.1 Subscripts vs. Indices

Subscripts are the most common method used to refer to matrix elements, for example, A(3,9) refers
to row 3, column 9. Indices are an alternative referencing method. Consider a 10 × 10 matrix A.
Internally, Matlab stores the matrix data linearly as a one-dimensional, 100-element array of data in
column-major order. 

1 11 21 · · · 81 91
2 12 22 82 92
3 13 23 83 93
...

...
...

...
...

10 20 30 · · · 90 100


An index refers to an element’s position in this one-dimensional array. Using an index, A(83) also refers
to the element on row 3, column 9.

It is faster to scan down columns than over rows. Column-major order means that elements
along a column are sequential in memory while elements along a row are further apart. Scanning down
columns promotes cache efficiency.

Conversion between subscripts and indices can be done with the sub2ind and ind2sub functions.
However, because these are M-file functions rather than fast built-in operations, it is more efficient to
compute conversions directly (also see Section 6). For a two-dimensional matrix A of size M×N, the
conversions between subscript (i,j) and index (index) are

A(i,j) ↔ A(i + (j-1)*M)

A(index) ↔ A(rem(index-1,M)+1, floor((index-1)/M)+1)

Indexing extends to N-D matrices as well, with indices increasing first through the columns, then
through the rows, through the third dimension, and so on. Subscript notation extends intuitively,

A(. . . , dim4, dim3, row, col).

7.2 Vectorized Subscripts

It is useful to work with submatrices rather than individual elements. This is done with a vector of
indices or subscripts. If A is a two-dimensional matrix, a vector subscript reference has the syntax

A(rowv, colv)
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where rowv and colv are vectors. Both may be of any length and their elements may be in any order.
If either is a matrix, it is reshaped to a vector. There is no difference between using row vectors or
column vectors in vector subscripts.

Let M = length(rowv) and N = length(colv). Then a vector subscripted matrix on the right-hand
side∗ returns a submatrix of size M×N:

A(rowv(1), colv(1)) A(rowv(1), colv(2)) A(rowv(1), colv(3)) · · · A(rowv(1), colv(N))
A(rowv(2), colv(1)) A(rowv(2), colv(2)) A(rowv(2), colv(3)) · · · A(rowv(2), colv(N))

...
...

A(rowv(M), colv(1)) A(rowv(M), colv(2)) A(rowv(M), colv(3)) · · · A(rowv(M), colv(N))


A vector subscripted matrix can also appear on the left-hand side as

A(rowv, colv) = scalar or M×N matrix

If any elements in the destination reference are repeated, the source element with the greater index
dominates. For example,

>> A = zeros(2); A([1,2],[2,2]) = [1,2;3,4]

A =

0 2

0 4

Vector subscript references extend intuitively in higher dimensions.

7.3 Vector Indices

Multiple elements can also be referenced with vector indices.
A(indexv)

where indexv is an array of indices. On the right-hand side, a vector index reference returns a matrix
the same size and shape as indexv. If indexv is a 3× 4 matrix, then A(indexv) is the 3× 4 matrix

A(indexv) =

 A(indexv(1, 1)) A(indexv(1, 2)) A(indexv(1, 3)) A(indexv(1, 4))
A(indexv(2, 1)) A(indexv(2, 2)) A(indexv(2, 3)) A(indexv(2, 4))
A(indexv(3, 1)) A(indexv(3, 2)) A(indexv(3, 3)) A(indexv(3, 4))


While vector subscripts are limited to referring to block-shaped submatrices, vector indices can refer to
any subset of elements.

If a vector index reference is on the left-hand side, the right-hand side must return a matrix of the same
size as indexv or a scalar. As with vector subscripts, ambiguous duplicate assignments use the value
with greater source index.

∗The left- and right-hand sides (LHS and RHS) refer to the two sides of an assignment, “LHS = RHS.”
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7.4 Reference Wildcards

Using the wildcard, :, in a subscript refers to an entire row or column. For example, A(:,1) refers
to every row in column one–the entire first column. This can be combined with vector subscripts,
A([2,4],:) refers to the second and fourth rows.

When the wildcard is used in a vector index, the entire matrix is referenced. On the right-hand side,
this always returns a column vector.

A(:) = column vector
This is frequently useful: for example, if a function input must be a row vector, the user’s input can be
quickly reshaped into row vector with A(:).’ (make a column vector and transpose to a row vector).

A(:) on the left-hand side assigns all the elements of A, but does not change its size. For example,
A(:) = 8 changes all elements of matrix A to 8.

7.5 Logical Indexing

Given a logical array mask with the same size as A,

A(mask)

refers to all elements of A where the corresponding element of mask is 1 (true). It is equivalent to
A(find(mask)). A common usage of logical indexing is to refer to elements based on a per-element
condition, for example,

A(abs(A) < 1e−3) = 0

sets all elements with magnitude less than 10−3 to zero. Logical indexing is also useful to select non-
rectangular sets of elements, for example,

A(logical(eye(size(A))))

references the diagonal elements of A. Note that for a right-hand side reference, it is faster to use
diag(A) to get the diagonal of A.

7.6 Deleting Submatrices with [ ]

Elements in a matrix can be deleted by assigning the empty matrix. For example, A([3,5]) = [ ]

deletes the third and fifth element from A. If this is done with index references, the matrix is reshaped
into a row vector.

It is also possible to delete with subscripts if all but one subscript are the wildcard. A(2,:) = [ ]

deletes the second row. Deletions like A(2,1) = [ ] or even A(2,1:end) = [ ] are illegal.
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8 Solving Ax = b

Many problems involve solving a linear system, that is, solving the Ax = b problem
a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n



x1

x2

...
xn

 =


b1

b2
...
bn

 .

The condition number cond(A) describes how sensitive the problem is to small perturbations. Matlab

can efficiently approximate cond(A) with condest. Smaller condition number is better, and in this case
A is said to be well-conditioned. An infinite condition number implies that A is singular—the problem
cannot be solved, though it may be solved approximately with the pseudoinverse (x = pinv(A)*b).

Small- to moderately-sized problems are solved efficiently by the backslash operator:

x = A\b; % Solves A*x = b

We shall focus on large problems.

8.1 Iterative Methods

For large problems, Matlab is well-equipped with iterative solvers: bicg, bicgstab, cgs, gmres, lsqr,
minres, pcg, symmlq, qmr. The general calling syntax (except for gmres) is

[x,flag,relres,iter,resvec] = method(A,b,tol,maxit,M1,M2,x0)

where the required arguments are the matrix A, the right-hand side b, and the solution x. The minres,
pcg, and symmlq methods require A to be symmetric (A = A’) and pcg additionally requires positive
definiteness (all eigenvalues are positive). The optional input variables are

tol accuracy tolerance (default 10−6)
maxit maximum number of iterations (default 20)
M1, M2 the method uses preconditioner M = M1*M2; it solves M−1Ax = M−1b

x0 initial guess

The optional output variables are

flag convergence flag (0 = success, nonzero values are error codes)
relres relative residual ‖b−Ax‖/‖b‖
iter number of iterations
resvec a vector listing the residual norm ‖b−Ax‖ at each iteration

The gmres method includes one additional input,

[x,flag,relres,iter,resvec] = gmres(A,b,restart,tol,maxit,...)

The method restarts every restart iterations, or if restart=[], the method does not restart.
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Which method works best depends on the particular problem. This diagram (adapted from Demmel [3])
provides a reasonable starting point.

A symmetric?

A> available?

Is storage
expensive? Try gmres

No

Try cgs or bicgstabYesNo

Is A well-
conditioned? Try qmr

No

Yes

Yes
No

A definite?

Is A well-
conditioned? Try lsqr

Yes

Try minresNo

No
Try pcg

Yes

Yes

Functional Representation

Rather than storing the matrix explicitly, it is often convenient to represent A as a linear function
acting on x. For example,

A*x =


1
1 1
...

. . .

1 1 · · · 1



x1

x2

...
xn

 .
can be expressed as A*x = cumsum(x). In addition to being conceptually convenient, functional repre-
sentation avoids the memory overhead of storing the matrix.

All the iterative solvers support functional representation, where a function handle afun is given in place
of matrix A. The function afun(x) should accept a vector x and return A*x. The help for lsqr (“help
lsqr”) has a functional example where A is the central differencing operator. The bicg, lsqr, and qmr

methods also require the transpose: afun(x,’notransp’) should return A*x and afun(x,’transp’)

should return A’*x. Similarly, the preconditioner may be given as a function handle mfun.

Special Matrices

For certain special matrix structures, the Ax = b problem can be solved very quickly.

� Circulant matrices. Matrices corresponding to cyclic convolution Ax = h ∗ x are diagonalized in
the Fourier domain, and can be solved by x = ifft(fft(b)./fft(h));

� Triangular and banded. Triangular matrices and diagonally-dominant banded matrices are solved
efficiently by sparse LU factorization: [L,U] = lu(sparse(A)); x = U\(L\b);

� Poisson problem. If A is a finite difference approximation of the Laplacian, the problem is effi-
ciently solved by multigrid methods (e.g., web search for “matlab multigrid”).
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8.2 Inlined PCG

As discussed in Section 6, it is sometimes advantageous to inline a simple piece of code to tailor it to
a specific application. While most iterative methods are too lengthy for inlining, conjugate gradients
has a short implementation. The value of inlining pcg is that calls to afun and mfun may be inlined.
Beware that in the following code, A must be symmetric positive definite—otherwise, it will not work!

%% Use PCG to solve Ax = b %%

tol = 1e−6; % Convergence tolerance

maxit = 20; % Maximum number of iterations

x = x0; % Set x to initial guess (if no guess is available, use x0 = 0)

Compute w = Ax

r = b − w; % r = residual vector

Set p = r, or if using a preconditioner, p = M−1 r

d = r'*p;

for iter = 1:maxit

if norm(p) < tol

break; % PCG converged successfully (small change in x)

end

Compute w = Ap

alpha = e/(p'*w);

x = x + alpha*p;

r = r − alpha*w;

Set w = r, or if using a preconditioner, w = M−1 r

if norm(w) < tol && norm(r) < tol

break; % PCG converged successfully (small residual)

end

dlast = d;

d = r'*w;

p = w + (d/dlast)*p;

end

After the loop, the final solution is in x. The method converged successfully with accuracy tol if it
encountered a break statement, otherwise, it failed or needed more iterations. The relative residual
may be computed by relres = norm(r)/norm(b) after the loop and resvec by storing the value of
norm(r) each iteration.
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9 Numerical Integration

Quadrature formulas are numerical approximation of integrals of the form∫ b

a

f(x) dx ≈
∑
k

wkf(xk),

where the xk are called the nodes or abscissas and wk are the associated weights. Simpson’s rule is∫ b

a

f(x) dx ≈ h

3
[f(a) + 4f(a+ h) + f(b)] , h =

b− a
2

.

Simpson’s rule is a quadrature formula with nodes a, a+ h, b and node weights h
3 , 4h

3 , h
3 .

Matlab has several functions for quadrature in one dimension:

quad adaptive Simpson Better for low accuracy and nonsmooth integrands
quadl adaptive Gauss-Lobatto Higher accuracy with smoother integrands
quadgk adaptive Gauss-Kronrod Oscillatory integrands and high accuracy
quadv adaptive Simpson Vectorized for multi-valued integrands

The quad- functions are robust and precise, however, they are not very efficient. They use an adap-
tive refinement procedure, and while this reduces the number of function calls, they gain little from
vectorization and incur significant overhead.

If an application requires approximating an integral whose integrand can be efficiently vectorized, using
nonadaptive quadrature may improve speed.

for n = −20:20 % Compute Fourier series coefficients

c(n + 21) = quad(@(x)(exp(sin(x).ˆ6).*exp(−1i*x*n)),0,pi,1e−4);
end

This code runs in 5.16 seconds. In place of quad, using Simpson’s composite rule with N = 199 nodes
yields results with comparable accuracy and allows for vectorized computation. Since the integrals are
all over the same interval, the nodes and weights only need to be constructed once.

N = 199; h = pi/(N−1);
x = (0:h:pi).'; % Nodes

w = ones(1,N); w(2:2:N−1) = 4; w(3:2:N−2) = 2; w = w*h/3; % Weights

for n = −20:20
c(n + 21) = w * ( exp(sin(x).ˆ6).*exp(−1i*x*n) );

end

This version of the code runs in 0.02 seconds (200 times faster). The quadrature is performed by the
dot product multiplication with w. It can be further optimized by replacing the for loop with one
vector-matrix multiply:

[n,x] = meshgrid(−20:20, 0:h:pi);

c = w * ( exp(sin(x).ˆ6).*exp(−1i*x.*n) );
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For this example, quadv can be used on a multi-valued integrand with similar accuracy and speed,

n = −20:20;
c = quadv(@(x)exp(sin(x).ˆ6).*exp(−1i.*x.*n),0,pi,1e−4);

9.1 One-Dimensional Integration∫ b
a
f(x) dx is approximated by composite Simpson’s rule with

h = (b − a)/(N−1);
x = (a:h:b).';

w = ones(1,N); w(2:2:N−1) = 4; w(3:2:N−2) = 2; w = w*h/3;

I = w * f(x); % Approximately evaluate the integral

where N is an odd integer specifying the number of nodes.

A good higher-order choice is 4th-order Gauss-Lobatto [4] (as used by quadl), based on∫ 1

−1

f(x) dx ≈ 1
6f(−1) + 5

6f(− 1√
5
) + 5

6f( 1√
5
) + 1

6f(1).

N = max(3*round((N−1)/3),3) + 1; % Adjust N to the closest valid choice

h = (b − a)/(N−1);
d = (3/sqrt(5) − 1)*h/2;

x = (a:h:b).'; x(2:3:N−2) = x(2:3:N−2) − d; x(3:3:N−1) = x(3:3:N−1) + d;

w = ones(1,N); w(4:3:N−3) = 2; w([2:3:N−2,3:3:N−1]) = 5; w = w*h/4;

I = w * f(x); % Approximately evaluate the integral

The number of nodes N must be such that (N − 1)/3 is an integer. If not, the first line adjusts N to
the closest valid choice. It is usually more accurate than Simpson’s rule when f has six continuous
derivatives, f ∈ C6(a, b).

A disadvantage of this nonadaptive approach is that the accuracy of the result is only indirectly con-
trolled by the parameter N. To guarantee a desired accuracy, either use a generously large value for N

or, if possible, determine the error bounds [6, 7]

Simpson’s rule error ≤ (b− a)h4

180
max
a≤η≤b

∣∣∣f (4)(η)
∣∣∣ provided f ∈ C4(a, b),

4th-order Gauss-Lobatto error ≤ 27(b− a)h6

56000
max
a≤η≤b

∣∣∣f (6)(η)
∣∣∣ provided f ∈ C6(a, b),

where h = b−a
N−1 . Note that these bounds are valid only when the integrand is sufficiently differentiable: f

must have four continuous derivatives for the Simpson’s rule error bound, and six continuous derivatives
for 4th-order Gauss-Lobatto.
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Composite Simpson’s rule is a fast and effective default choice. But depending on the situation, other
methods may be faster and more accurate:

� If the integrand is expensive to evaluate, or if high accuracy is required and the error bounds
above are too difficult to compute, use one of Matlab’s adaptive methods. Otherwise, consider
composite methods.

� Use higher-order methods (like Gauss-Lobatto/quadl) for very smooth integrands and lower-order
methods for less smooth integrands.

� Use the substitution u = 1
1−x or Gauss-Laguerre quadrature for infinite-domain integrals like

∫∞
0

.

9.2 Multidimensional Integration

An approach for evaluating double integrals of the form
∫ b
a

∫ d
c
f(x, y) dy dx is to apply one-dimensional

quadrature to the outer integral
∫ b
a
F (x) dx and then for each x use one-dimensional quadrature over

the inner dimension to approximate F (x) =
∫ d
c
f(x, y) dy. The following code does this with composite

Simpson’s rule with Nx×Ny nodes:

%%% Construct Simpson nodes and weights over x %%%

h = (b − a)/(Nx−1);
x = (a:h:b).';

wx = ones(1,Nx); wx(2:2:Nx−1) = 4; wx(3:2:Nx−2) = 2; wx = w*h/3;

%%% Construct Simpson nodes and weights over y %%%

h = (d − c)/(Ny−1);
y = (c:h:d).';

wy = ones(1,Ny); wy(2:2:Ny−1) = 4; wy(3:2:Ny−2) = 2; wy = w*h/3;

%%% Combine for two−dimensional integration %%%

[x,y] = meshgrid(x,y); x = x(:); y = y(:);

w = wy.'*wx; w = w(:).';

I = w * f(x,y); % Approximately evaluate the integral

Similarly for three-dimensional integrals, the weights are combined with

[x,y,z] = meshgrid(x,y,z); x = x(:); y = y(:); z = z(:);

w = wy.'*wx; w = w(:)*wz; w = w(:).';

When the integration region is complicated or of high dimension, Monte Carlo integration techniques
are appropriate. The disadvantage is that an N -point Monte Carlo quadrature has error on the
order O( 1√

N
), so many points are necessary even for moderate accuracy. Suppose that N points,

x1, x2, . . . , xN , are uniformly randomly selected in a multidimensional region (or volume) Ω. Then∫
Ω

f dV ≈
∫

Ω
dV
N

N∑
n=1

f(xn).
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To integrate a complicated region W that is difficult to sample uniformly, find an easier region Ω that
contains W and can be sampled [5]. Then∫

W

f dV =
∫
Ω

f · χW dV ≈
∫

Ω
dV
N

N∑
n=1

f(xn)χW (xn), χW (x) =

{
1, x ∈W,
0, x /∈W.

χW (x) is the indicator function of W : χW (x) = 1 when x is within region W and χW (x) = 0 otherwise.
Multiplying the integrand by χW sets contributions from outside of W to zero.

For example, consider finding the center of mass of the shape W defined by cos
(

2
√
x2 + y2

)
x ≤ y

and x2 + y2 ≤ 4. Given the integrals M =
∫
W

dA, Mx =
∫
W
xdA, and My =

∫
W
y dA, the center of

mass is (Mx

M ,
My

M ). The region is contained in the rectangle Ω defined by −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2.
The following code estimates M , Mx, and My:

%%% Uniformly randomly sample points (x,y) in Ω %%%

x = 4*rand(N,1) − 2;

y = 4*rand(N,1) − 2;

%%% Restrict the points to region W %%%

i = (cos(2*sqrt(x.ˆ2 + y.ˆ2)).*x <= y & x.ˆ2 + y.ˆ2 <= 4);

x = x(i); y = y(i);

%%% Approximately evaluate the integrals %%%

area = 4*4; % The area of rectangle Ω

M = (area/N) * length(x);

Mx = (area/N) * sum(x);

My = (area/N) * sum(y);

-2 0 2
-2

0

2

Region W sampled with N = 1500.

The center of mass is ≈ (0.5, 0.7).

More generally, if W is a two-dimensional region contained in the rectangle defined by a ≤ x ≤ b and
c ≤ y ≤ d, the following code approximates

∫
W
f dA:

x = a + (b−a)*rand(N,1);
y = c + (d−c)*rand(N,1);
i = logical(indicatorW(x,y));

x = x(i); y = y(i);

area = (b−a)*(d−c);
I = (area/N) * sum(f(x,y)); % Approximately evaluate the integral

where indicatorW(x,y) is the indicator function χW (x, y) for region W .

For refinements and variations of Monte Carlo integration, see for example [1].
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10 Signal Processing

Even without the Signal Processing Toolbox, Matlab is quite capable in signal processing computa-
tions. This section lists code snippets to perform several common operations efficiently.

Moving-average filter

To compute an N-sample moving average of x with zero padding:

y = filter(ones(N,1)/N,1,x);

For large N, it is faster to use

y = cumsum(x)/N;

y(N+1:end) = y(N+1:end) − y(1:end−N);

Locating zero-crossings and extrema

To obtain the indices where signal x crosses zero:

i = find(diff(sign(x)));

% The kth zero−crossing lies between x(i(k)) and x(i(k)+1)

Linear interpolation can be used for subsample estimates of zero-crossing locations:

i = find(diff(sign(x)));

i = i − x(i)./(x(i+1) − x(i)); % Linear interpolation

Since local maximum and minimum points of a signal have zero derivative, their locations can be
estimated from the zero-crossings of diff(x), provided the signal is sampled with sufficiently fine
resolution. For a coarsely sampled signal, a better estimate is

iMax = find(sign(x(2:end−1)−x(1:end−2)) ...

+ sign(x(2:end−1)−x(3:end)) > 0) + 1;

iMin = find(sign(x(2:end−1)−x(1:end−2)) ...

+ sign(x(2:end−1)−x(3:end)) < 0) + 1;

FFT-based convolution

This line performs FFT-based circular convolution, equivalent to y = filter(b,1,x) except near the
boundaries, provided that length(b) < length(x):

y = ifft(fft(b,length(x)).*fft(x));

For FFT-based zero-padded convolution, equivalent to y = filter(b,1,x),

N = length(x)+length(b)−1;
y = ifft(fft(b,N).*fft(x,N));

y = y(1:length(x));

In both code snippets above, y will be complex-valued, even if x and b are both real. To force y to be
real, follow the computation with y = real(y). If you have the Signal Processing Toolbox, it is faster
to use fftfilt for FFT-based, zero-padded filtering.
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Noncausal filtering and other boundary extensions

For its intended use, the filter command is limited to causal filters, that is, filters that do not involve
“future” values to the right of the current sample. Furthermore, filter is limited to zero-padded
boundary extension; data beyond the array boundaries are assumed zero as if the data were padded
with zeros.

For two-tap filters, noncausal filtering and other boundary extensions are possible through filter’s
fourth initial condition argument. Given a boundary extension value padLeft for x(0), the filter
yn = b1xn + b2xn−1 may be implemented as

y = filter(b,1,x,padLeft*b(2));

Similarly, given a boundary extension value padRight for x(end+1), the filter yn = b1xn+1 + b2xn is
implemented as

y = filter(b,1,[x(2:end),padRight],x(1)*b(2));

Choices for padLeft and padRight for various boundary extensions are

Boundary extension padLeft padRight

Periodic x(end) x(1)

Whole-sample symmetric x(2) x(end-1)

Half-sample symmetric x(1) x(end)

Antisymmetric 2*x(1)-x(2) 2*x(end)-x(end-1)

It is in principle possible to use a similar approach for longer filters, but ironically, computing the initial
condition itself requires filtering. To implement noncausal filtering and filtering with other boundary
handling, it is usually fastest to pad the input signal, apply filter, and then truncate the result.

Upsampling and Downsampling

Upsample x (insert zeros) by factor p:

y = zeros(length(x)*p−p+1,1); % For trailing zeros, use y = zeros(length(x)*p,1);

y(1:p:length(x)*p) = x;

Downsample x by factor p, where 1 ≤ q ≤ p:

y = x(q:p:end);
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Haar Wavelet

This code performs K stages of the Haar wavelet transform on the input data x to produce wavelet
coefficients y. The input array x must have length divisible by 2K.

Forward transform:

y = x(:); N = length(y);

for k = 1:K

tmp = y(1:2:N) + y(2:2:N);

y([1:N/2,N/2+1:N]) = ...

[tmp;y(1:2:N) − 0.5*tmp]/sqrt(2);

N = N/2;

end

Inverse transform:

x = y(:); N = length(x)*pow2(−K);

for k = 1:K

N = N*2;

tmp = x(N/2+1:N) + 0.5*x(1:N/2);

x([1:2:N,2:2:N]) = ...

[tmp;x(1:N/2) − tmp]*sqrt(2);

end

Daubechies 4-Tap Wavelet

This code implements the Daubechies 4-tap wavelet in lifting scheme form [2]. The input array x must
have length divisible by 2K. Filtering is done with symmetric boundary handling.

Forward transform:

U = 0.25*[2−sqrt(3),−sqrt(3)];
ScaleS = (sqrt(3) − 1)/sqrt(2);

ScaleD = (sqrt(3) + 1)/sqrt(2);

y = x(:); N = length(y);

for k = 1:K

N = N/2;

y1 = y(1:2:2*N);

y2 = y(2:2:2*N) + sqrt(3)*y1;

y1 = y1 + filter(U,1,...

y2([2:N,max(N−1,1)]),y2(1)*U(2));
y(1:2*N) = [ScaleS*...

(y2 − y1([min(2,N),1:N−1]));ScaleD*y1];
end

Inverse transform:

U = 0.25*[2−sqrt(3),−sqrt(3)];
ScaleS = (sqrt(3) − 1)/sqrt(2);

ScaleD = (sqrt(3) + 1)/sqrt(2);

x = y(:); N = length(x)*pow2(−K);

for k = 1:K

y1 = x(N+1:2*N)/ScaleD;

y2 = x(1:N)/ScaleS + y1([min(2,N),1:N−1]);
y1 = y1 − filter(U,1,...

y2([2:N,max(N−1,1)]),y2(1)*U(2));
x([1:2:2*N,2:2:2*N]) = [y1;y2 − sqrt(3)*y1];

N = 2*N;

end

To use periodic boundary handling rather than symmetric boundary handling, change appearances of
[2:N,max(N-1,1)] to [2:N,1] and [min(2,N),1:N-1] to [N,1:N-1].
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11 Miscellaneous

Clip a value without using if statements

To clip (or clamp, bound, or saturate) a value to within a range, the straightforward implementation is

if x < lowerBound

x = lowerBound;

elseif x > upperBound

x = upperBound;

end

Unfortunately, this is slow. A faster method is to use the min and max functions:

x = max(x,lowerBound); % Clip elements from below, force x >= lowerBound

x = min(x,upperBound); % Clip elements from above, force x <= upperBound

Moreover, it works per-element if x a matrix of any size.

Convert any array into a column vector

It is often useful to force an array to be a column vector, for example, when writing a function expecting
a column vector as an input. This simple trick will convert the input array of any shape and number
of dimensions to a column vector, even if the input is already a column vector.

x = x(:); % Convert x to a column vector

Similarly, x = x(:,:) reduces an N-d array to 2D, where the number of rows stays the same.

Find the min/max of a matrix or N-d array

Given a matrix input (with no other inputs), the min and max functions operate along the columns,
finding the extreme element in each column. To find the extreme element over the entire matrix, one
way for a two-dimensional matrix is min(min(A)). A better method that works regardless of the number
of dimensions and determines the extreme element’s location is

[MinValue, MinIndex] = min(A(:)); % Find the minimum element in A

% The minimum value is MinValue, the index is MinIndex

MinSub = ind2sub(size(A), MinIndex); % Convert MinIndex to subscripts

The minimum element is A(MinIndex) or A(MinSub(1), MinSub(2), . . .) as a subscript reference.
(Similarly, replace min with max for maximum value.)
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Flood filling

Flood filling, like the “bucket” tool in image editors, can be elegantly written as a recursive function:

function I = flood1(I,c,x,y)

% Flood fills image I from point (x,y) with color c.

c2 = I(y,x);

I(y,x) = c;

if x > 1 & I(y,x−1) == c2 & I(y,x−1) ˜= c, I = flood1(I,c,x−1,y); end

if x < size(I,2) & I(y,x+1) == c2 & I(y,x+1) ˜= c, I = flood1(I,c,x+1,y); end

if y > 1 & I(y−1,x) == c2 & I(y−1,x) ˜= c, I = flood1(I,c,x,y−1); end

if y < size(I,1) & I(y+1,x) == c2 & I(y+1,x) ˜= c, I = flood1(I,c,x,y+1); end

Being a highly recursive function, this is inefficient in Matlab. The following code is faster:

function I = flood2(I,c,x,y)

% Flood fills image I from point (x,y) with color c.

LastFlood = zeros(size(I));

Flood = LastFlood;

Flood(y,x) = 1;

Mask = (I == I(y,x));

FloodFilter = [0,1,0; 1,1,1; 0,1,0];

while any(LastFlood(:) ˜= Flood(:))

LastFlood = Flood;

Flood = conv2(Flood,FloodFilter,'same') & Mask;

end

I(find(Flood)) = c;

The key is the conv2 two-dimensional convolution function. Flood filling a 40×40-pixel region takes
1.168 seconds with flood1 and 0.067 seconds with flood2.

Vectorized use of set on GUI objects

While not a speed improvement, a trick for cleaner code is vectorized use of set on GUI objects. A
serious graphical user interface (GUI) can have dozens of objects and many properties to configure. For
example, to define three edit boxes with white text background and left text alignment:

uicontrol('Units', 'normalized', 'Position', [0.1,0.9,0.7,0.05], ...

'HorizontalAlignment', 'left', 'Style', 'edit', 'BackgroundColor', [1,1,1]);

uicontrol('Units', 'normalized', 'Position', [0.1,0.8,0.7,0.05], ...

'HorizontalAlignment', 'left', 'Style', 'edit', 'BackgroundColor', [1,1,1]);

uicontrol('Units', 'normalized', 'Position', [0.1,0.7,0.7,0.05], ...

'HorizontalAlignment', 'left', 'Style', 'edit', 'BackgroundColor', [1,1,1]);
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A vectorized call to set reduces this to

h(1) = uicontrol('Units', 'normalized', 'Position', [0.1,0.9,0.7,0.05]);

h(2) = uicontrol('Units', 'normalized', 'Position', [0.1,0.8,0.7,0.05]);

h(3) = uicontrol('Units', 'normalized', 'Position', [0.1,0.7,0.7,0.05]);

set(h, 'HorizontalAlignment', 'left', 'Style', 'edit','BackgroundColor', [1,1,1]);

12 Further Reading

For more reading on vectorization, see the MathWorks vectorization guide:
http://www.mathworks.com/support/tech-notes/1100/1109.shtml

For further details and examples on JIT Acceleration, see for example
http://www.mathworks.com/access/helpdesk_r13/help/techdoc/matlab_prog/ch7_perf.html

For a thorough guide on efficient array manipulation, see MATLAB array manipulation tips and tricks:
http://home.online.no/~pjacklam/matlab/doc/mtt

For numerical methods with Matlab, see Numerical Computing with MATLAB:
http://www.mathworks.com/moler

MEX

In a coding situation that cannot be optimized any further, keep in mind that the Matlab language
is intended primarily for easy prototyping rather than high-speed computation. In some cases, an
appropriate solution is Matlab Executable (MEX) external interface functions. With a C or Fortran
compiler, it is possible to produce a MEX function that can be called from within Matlab in the same
as an M-function. The typical speed improvement over equivalent M-code is easily ten-fold.

Installations of Matlab include an example of MEX under directory <MATLAB>/extern/examples/mex.
In this directory, a function “yprime” is written as M-code (yprime.m) and equivalent C (yprime.c)
and Fortran (yprime.f) MEX source code. For more information, see the MathWorks MEX-files guide

http://www.mathworks.com/support/tech-notes/1600/1605.html

For information on compiling MEX files with the GNU compiler collection (GCC), see
http://gnumex.sourceforge.net

Beware, MEX is an ambitious alternative to M-code. Writing MEX files requires learning some low-level
details about Matlab, and takes more time to develop than M-code.
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Matlab Compiler

The Matlab Compiler generates a standalone executable from M-code. For product information and
documentation, see

http://www.mathworks.com/access/helpdesk/help/toolbox/compiler
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