NOTE: when finding \(\hat{\omega} \), make sure to choose a value of \(\theta \) such that \(-\pi < \hat{\omega} < \pi\)

Form A
EEL 3135
Section 1471

Quiz #2

Given
\[x(t) = 6 \cos \left(2\pi (50)t - \pi/3 \right) \]

(a) According to the Sampling Theorem, what should the sampling frequency be? (Give your answer in terms of the frequency of the given signal)?
\[f_s > 2f_0 \]
\[\therefore f_s > 2(50) \Rightarrow f_s > 100Hz \]

(b) Would aliasing occur if the signal \((x(t)) \) is sampled at a frequency of 200Hz?
What would the sampled signal \((x[n]) \) be at that frequency?
\[f_s' = 200Hz > 100Hz \]
\[x[n] = 6 \cos (\hat{\omega} n - \pi/3) \]
\[= 6 \cos \left(\frac{\pi}{2} n - \frac{\pi}{3} \right) \]
\[\hat{\omega} = \frac{2\pi f_s}{f_s} + \frac{2\pi n}{f_s} \]
\[= \frac{2\pi}{4} \Rightarrow \pi/2 \]

(c) If the \(x[n] \) in part (b) was given as input to an IDEAL D-to-C converter, what would the reconstructed signal \(x(t) \) be?
Since there was no aliasing, \(x(t) \) = the original signal
\[\therefore x(t) = 6 \cos \left(2\pi (50)t - \pi/3 \right) \]

(d) Would aliasing occur if the signal \((x(t)) \) is sampled at a frequency of 60Hz?
What would the sampled signal \((x[n]) \) be at that frequency?
\[f_s' = 60Hz < 100Hz \]
\[\hat{\omega} = -\frac{2\pi n}{6} = -\pi/3 \]
\[x[n] = 6 \cos \left(\hat{\omega} n - \frac{\pi}{3} \right) \]
\[= 6 \cos \left(-\frac{\pi}{3} n - \frac{\pi}{3} \right) = 6 \cos \left(\frac{\pi}{3} n + \frac{\pi}{3} \right) \]

(e) If the \(x[n] \) in part (d) was given as input to an IDEAL D-to-C converter, what would the reconstructed signal \(x(t) \) be?
Discrete ↔ Continuous
\[n \leftrightarrow \frac{tf_s}{3} \]
\[x(t) = 6 \cos \left(\frac{\pi}{3} (60) t + \pi/3 \right) \]
\[= 6 \cos \left(\frac{\pi}{3} (200) t + \pi/3 \right) = 6 \cos \left(2\pi (10) t + \pi/3 \right) \]
NOTE: when finding \(\dot{\omega} \), make sure to choose a value of \(\dot{\omega} \) such that \(-\pi < \dot{\omega} < \pi\).

Form B
EEL 3135
Section 1471

Name: KEY
UF ID: ____________________________

Quiz #2

Given

\[x(t) = 3 \cos(2\pi(20)t - \pi/4) \]

(a) According to the Sampling Theorem, what should the sampling frequency be? (Give your answer in terms of the frequency of the given signal)

\[f_s \geq \frac{2\pi}{\dot{\omega}} \]

\[f_s \geq \frac{40}{\sqrt{2}} \]

(b) Would aliasing occur if the signal \(x(t) \) is sampled at a frequency of 100Hz? What would the sampled signal \(x[n] \) be at that frequency?

No, \(100 \text{ Hz} \not\geq 40 \text{ Hz} \)

\[\dot{\omega} = \frac{2\pi f_s}{100} = \frac{2\pi(20)}{100} = \frac{40}{100} \pi = 0.4\pi \]

\[x[n] = 3 \cos(\dot{\omega}n - \pi/4) \]

\[= 3 \cos(0.4\pi n - \pi/4) \]

(c) If the \(x[n] \) in part (b) was given as input to an IDEAL D-to-C converter, what would the reconstructed signal \(x(t) \) be?

Since there is no aliasing, the reconstructed signal \(x(t) \) will be:

\[x(t) = 3 \cos(2\pi(20) t - \pi/4) \]

which is the original signal.

(d) Would aliasing occur if the signal \(x(t) \) is sampled at a frequency of 30Hz? What would the sampled signal \(x[n] \) be at that frequency?

Yes, \(30 \text{ Hz} < 40 \text{ Hz} \)

\[\dot{\omega} = \frac{2\pi(30)}{30} = \frac{4\pi}{3} + 2\pi k \]

\[x[n] = 3 \cos(\dot{\omega}n - \pi/4) \]

\[= 3 \cos(-\frac{2\pi}{3} n - \pi/4) = 3 \cos(\frac{2\pi}{3} n + \pi/4) \]

\[= \frac{4\pi}{3} + \frac{2\pi}{3} \]

(e) If the \(x[n] \) in part (d) was given as input to an IDEAL D-to-C converter, what would the reconstructed signal \(x(t) \) be?

Discrete \(\leftrightarrow \) Continuous

\[\dot{x}(t) = 3 \cos\left(\frac{2\pi}{3}(30 k) + \pi/4\right) \]

\[= 3 \cos\left(2\pi(10) k + \pi/4\right) \]
NOTE: when finding \(\hat{\omega} \), make sure to choose a value of \(\hat{\omega} \) such that \(-\pi < \hat{\omega} < \pi \)

Form C
EEL 3135
Section 1471
Name: **KEY**
UF ID:

Quiz #2

Given
\[x(t) = 4 \cos (2\pi(40)t - \pi/5) \]

(a) According to the Sampling Theorem, what should the sampling frequency be? (Give your answer in terms of the frequency of the given signal)?

\[f_s \geq 2f_0 \]

\[\therefore f_s \geq 2(40) \geq 80 \text{ Hz} \]

(b) Would aliasing occur if the signal \(x(t) \) is sampled at a frequency of 90Hz? What would the sampled signal \(x[n] \) be at that frequency?

\[N_o \quad \because 90 \text{ Hz} \geq 80 \text{ Hz} \]

\[x[n] = 4 \cos \left(\frac{\omega}{9} n - \frac{\pi}{15} \right) \]

\[= 4 \cos \left(\frac{8\pi}{9} n - \frac{4\pi}{15} \right) \]

(c) If the \(x[n] \) in part (b) was given as input to an IDEAL D-to-C converter, what would the reconstructed signal \(x(t) \) be?

Since there was no aliasing,

\[x(t) = 4 \cos \left(\frac{2\pi}{40} (t - \frac{\pi}{15}) \right) \]

which was the original signal.

(d) Would aliasing occur if the signal \(x(t) \) is sampled at a frequency of 50Hz? What would the sampled signal \(x[n] \) be at that frequency?

\[\text{Yes} \quad \because 50 \text{ Hz} < 80 \text{ Hz} \]

\[x[n] = 4 \cos \left(\frac{\omega}{f_s} n - \frac{\pi}{15} \right) \]

\[= 4 \cos \left(-\frac{2\pi}{5} n - \frac{\pi}{15} \right) \]

\[= 4 \cos \left(\frac{2\pi}{5} n + \frac{\pi}{15} \right) \frac{\pi}{5} \]

(e) If the \(x[n] \) in part (d) was given as input to an IDEAL D-to-C converter, what would the reconstructed signal \(x(t) \) be?

Discrete \(\longleftrightarrow \) Continuous

\[n \longleftrightarrow t f_s \]

\[x(k) = 4 \cos \left(\frac{2\pi}{5} (50 k + \pi/5) \right) = 4 \cos \left(\frac{2\pi}{5} (50 k + \pi/5) \right) \]