
172 IEEE SIGNAL PROCESSING LETTERS, VOL. 10, NO. 6, JUNE 2003

Robust Capon Beamforming
Petre Stoica, Fellow, IEEE, Zhisong Wang, Student Member, IEEE, and Jian Li, Senior Member, IEEE

Abstract—The Capon beamformer has better resolution and
much better interference rejection capability than the standard
(data-independent) beamformer, provided that the array steering
vector corresponding to the signal of interest (SOI) is accurately
known. However, whenever the knowledge of the SOI steering
vector is imprecise (as is often the case in practice), the perfor-
mance of the Capon beamformer may become worse than that of
the standard beamformer. We present a natural extension of the
Capon beamformer to the case of uncertain steering vectors. The
proposed robust Capon beamformer can no longer be expressed in
a closed form, but it can be efficiently computed. Its excellent per-
formance is demonstrated via a number of numerical examples.

Index Terms—Adaptive arrays, array errors, robust adaptive
beamforming, robust Capon beamforming, signal power estima-
tion.

I. INTRODUCTION AND PRELIMINARIES

CONSIDER an array comprising sensors, and let de-
note the theoretical covariance matrix of the array output

vector. We assume that has the following form:

(1)

where are the powers of the uncorrelated
signals impingingon thearray; are the locationpa-
rameters of the sources emitting those signals [e.g., their direc-
tions of arrival (DOAs)]; denotes the conjugate transpose;

is the array steering vector; and is the noise covariance
matrix (the “noise” comprises nondirectional signals; hence,
usually has full rank as opposed to the other terms in (1) whose
rank is equal to one). In what follows, we assume that the first
term in (1) corresponds to the signal of interest (SOI) and the re-
maining rank-one terms to interferences. Owing to the explicit
inclusion of the interference terms in (1), we can assume, without
being too restrictive, that the noise covariance matrix is given by

. This assumption on is made only for the convenience
of the numerical examples, but it hasno importance for the theo-
retical development of the robust Capon beamformer (RCB). In
the numerical examples (see Section III), we will also make use
of the following definition of the steering vector:

DOA
(2)
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which corresponds to a uniform linear array with half-wave-
length sensor spacing; in (2), denotes the transpose. Simi-
larly to the previous assumption on, the form of above is
not used in the theoretical development of the RCB. To end the
discussion about (1), we note that the above expression for
holds for both narrowband signals and wideband signals; in the
former case, is the covariance matrix at the center frequency;
in the latter, is the covariance matrix at the center of a given
frequency bin.

The robust beamforming problemwe will deal with in this
letter can now be briefly stated as follows: extend the Capon
beamformer so as to be able to accurately determine the power
of SOI even when only an imprecise knowledge of its steering
vector is available. More specifically, we assume that the
only knowledge we have about is that it belongs to the
following uncertainty ellipsoid:

(3)

where and (a positive definite matrix) are given. A partic-
ular instance of (3), which will be considered in the numerical
examples, occurs when the array calibration errors are relatively
small (and can hence be neglected), but our knowledge of
is inaccurate, viz. we wrongly assume that the DOA of SOI is

in lieu of . In such a case, we typically will choose
; if we also choose (for some ),

then (3) becomes

(4)

which is used in [1] and [2] to describe the uncertainty set of
. We will make use of (4) in the numerical examples (and

only there), for the sake of simplicity. Of course, in any appli-
cation in which we have enough informationrmation to choose

so as to describe the shape of the uncertainty set of
as well as possible, we will use (3) in lieu of (4). To continue this
remark on (3) and (4), we note that in some cases the steering
vector may be known to lie in an ellipsoid that is effectively flat
in one or more dimensions (see [3] and [4]). In such cases, the
use of (3) may lead to a numerically ill-conditioned problem and
is not recommended. The modification of (3) to include the flat
ellipsoid case is easy [3], [4]. The modification of the RCB ap-
proach in this letter to accommodate such a case is a bit more
complicated and will be presented elsewhere (see [5]1 ).

There is significant literature on robust beamforming, and
recent critical reviews can be found in [1]–[4] and [6]. As
explained in the cited references, most of the early suggested
methods are rather ad hoc. Only recently have some methods
with a clear theoretical background been proposed (e.g., see
[1]–[4], which make explicit use of an uncertainty set [such as
(4)], unlike the early methods). The RCB proposed in this letter
also has a firm theoretical basis. More specifically, we couple

1See also http://www.sal.ufl.edu/wang/RCBDiagLoad.pdf
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the formulation of standard (nonrobust) Capon beamformer
(SCB) in [7] with the uncertainty set in (3) and show that the
so-obtained robust beamforming problem can be efficiently
solved (see Section II for details). Herein, we focus on the SOI
power estimation problem, but the proposed RCB can also be
used for DOA as well as signal waveform estimation.

In a separate full paper [5], a detailed comparison with the
RCB approaches recently proposed in [1]–[4] will be provided.
As briefly explained in Section II, the approaches in the cited
papers and the one in this letter are based on rather different for-
mulations of the robust beamforming problem, and hence their
comparison is not a straightforward task.

II. ROBUST CAPON BEAMFORMING

The common formulation of the beamforming problem that
leads to the SCB is as follows (e.g., see [8] and [9]).

a) Determine the vector that is the solution to the
following linearly constrained quadratic problem:

subject to (5)

(in applications, is replaced by the sample covariance
matrix).

b) Use as an estimate of . The solution to (5) is
easily derived (assuming that the inverse ofexists)

(6)

Using (6) in Step b) above yields the following estimate of
:

(7)

The recent RCB approaches in [1]–[4] extended Step a) above
to take into account the fact that when there is uncertainty in

, the constraint on in (5) should be replaced with
a constraint on for any vector in the uncertainty set. Then,
the so-obtained is used in to derive an estimate of ,
as in Step b) of SCB.

Our approach is different. We use the reformulation of the
Capon beamforming problem in [7], which we present below in
a simple form, to which we append the uncertainty set in (3).
Proceeding in this way, wedirectly obtain a robust estimate of

, without any intermediate calculation of the vector. To
describe the details of our approach, we first prove thatin
(7) is the solution to the following problem (also see [7]):

subject to (8)

where the notation (for any Hermitian matrix ) means
that is positive semidefinite. The previous claim follows from
the next readily verified equivalences (here is the Her-
mitian square root of )

(9)

Hence is indeed the largest value of for which the
constraint in (8) is satisfied. Note that (8) can be interpreted as a
covariance fitting problem: given and , we wish to de-
termine the largest possible SOI term that can be
a part of under the natural constraint that the residual covari-
ance matrix be positive semidefinite. When is uncertain,
so that we only know that it belongs to the set (3), a direct ex-
tension of the previous covariance fitting interpretation leads to
the following robustified problem for estimating :

subject to

for any satisfying (10)

(where and are given).
Observe that both the power and the steering vector of SOI

are treated as unknowns in the above problem and, hence, that
there is a “scaling ambiguity” in the SOI covariance term in the
sense that and (for any ) give the
same term . This observation is important, as it implies
that obtained from (10) may easily be anoverestimateof .
To see why this is so, think of the fact that, for example, the
pair [ , ] (with and such that
belong to the uncertainty set) will be preferred by the criterion
in (10) (i.e., ) to the true pair [ , ]. Fortunately,
this problem is easily overcome in our framework. To explain
how this can be done, let be the solution to (10). Be-
cause [e.g., see (2)] we can simply eliminate
the aforementioned “scaling ambiguity” by replacing with

[so that as for the true steering

vector ] and accordingly by (so that

). Hence, we propose to estimateas

(11)

The numerical examples in the next section confirm thatis a
(much) more accurate estimate of than .

Remark: The approaches of [1]–[4] do not provide any direct
estimate , unlike our approach. Hence, they do not dispose of
a simple way [such as (11)] to correct the overestimation of the
SOI power that is likely a problem for all robust beamforming
approaches (this problem was in fact ignored in [1]–[4]). Note
that SOI power estimation is the main goal in many applications
including radar, sonar, and acoustic imaging.

The RCB problem (10) can be readily reformulated as a
semidefinite program. Indeed, using a new variable
along with the standard technique of Schur complements (e.g.,
see [9] and [10]) we can rewrite (10) as

subject to

(12)

The constraints in (12) are so-called linear matrix inequalities;
hence, (12) is a semidefinite program that can be solved in a
time that is a polynomial function of (e.g., see [10] and also
below). In the numerical examples in Section III, we use the
SeDuMi software (see [11]) to solve (12). SeDuMi is general
software that can be directly applied to (12) but which does not
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Fig. 1. SOI power estimates~� (bottom dashed line),̂� (top dashed line), and̂̂� (middle dashed line), versusK for (a) " = 0:05 and (b)" = 0:5. The true
SOI power is 20 dB, and" = 0 (i.e., no mismatch).

exploit the particular structure of (12) and requires in the order
of floating-point operations (flops). While this is quite a
bit more than the flops required by SCB, it is definitely
manageable. Furthermore, the structure of (12) can be exploited
to solve this problem in a time that is comparable with that re-
quired by SCB. Such a possibility along with other computa-
tional issues will be investigated in [5]. Here we only provide a
brief account of the main idea.

For any given , the solution to (12) is given by [see (9)]
. Hence, (12) can be reduced to the following

problem:

subject to (13)

Evidently, the solution to (13) will occur on the boundary of the
constraint set (under the natural condition that the trivial steering
vector does not belong to the set in (13)), and therefore
we can reformulate (13) as the following quadratic problem with
a quadratic equality constraint:

subject to (14)

This problem can be solved in flops by using the
Lagrange multiplier methodology(see [5]; also see [3] and [4]
for a related approach). It can also be solved slightly less effi-
ciently by using the second-order cone programming approach
(e.g., see [12] for a general discussion on second-order cone pro-
grams). In conclusion of the discussion on this aspect, note that
the semidefinite programming formulation of RCB is useful for
gaining atheoretical understandingof the RCB approach but
it is less suitable than other formulations [such as (14)] from a
practical implementation viewpoint.

III. N UMERICAL EXAMPLES

Our main motivation for studying the RCB problem was an
acoustic imaging application where the goal was to estimate the
SOI power in the presence of strong interferences as well as
some uncertainty in the SOI DOA. Consequently, in this sec-
tion we consider scenarios with several strong interferences,
in which the estimation of the SOI power is particularly chal-
lenging. We assume a spatially white noise whose covariance
matrix is given by . The power of SOI is 20 dB,

and the interference powers are 40 dB.
The SOI and interference directions of arrival are 10 ,

75 , 60 , 45 , 30 , 10 ,
25 , 35 , and 50 . (as it will be explained

shortly, we consider ). We assume a uniform linear array
with sensors for which the steering vector is given by
(2). We also assume that the theoretical covariance matrixis
available (sampling effects due to the use of the sample covari-
ance matrix in lieu of are minor for as few as 15 snapshots
(see [5]), and to simplify the present discussion we do not con-
sider them herein).

In all the examples, we use and
[as in (4)]. To show empirically that the choice ofis not a
critical issue for our RCB approach, in each case considered
below we will present numerical results for several values of
. We use the notation to denote the minimum value of

for which belongs to the set in (4), and we letdenote
any other choice of this user parameter. The aforementioned
insensitivity of the performance of our approach to the choice of

(in a “reasonable” interval around) is evidently a desirable
feature that we will illustrate numerically but will not attempt
to explain theoretically here.

We will vary the number of interferences from to
. For more than interferences, we observed a certain

performance degradation of the RCB, which was somewhat ex-
pected. Indeed, for an array with sensors, the SCB can
cancel generally up to interferences. This is so, since
the spatial filter of SCB needs one degree of freedom (DOF)
to satisfy the constraint in (5) and one DOF for nulling each in-
terference: as has DOFs, it follows that generally at most

interferences can be dealt with by SCB. For the
RCB, the (implicit) requirement to pass the SOI with an uncer-
tain steering vector is more demanding, and hence the number
of interferences that can be dealt with is smaller than nine.

In Figs. 1 and 2, we show both and to confirm that the
correction in (11) was in effect necessary. In Fig. 1, we show,

, and , versus , for the no-mismatch case; hence
in (4) and consequently . As can be seen from Fig. 1,
the performance degradation of compared with , in this
idealsituation for the SCB, is minor; moreover, this degradation
increases only slightly with increasing. We also see from Fig. 1
(and Fig. 2) that significantly overestimates as predicted.
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Fig. 2. SOI power estimates~� (bottom dashed line),̂� (top dashed line), and̂̂� (middle dashed line), versusK for (a)" = 0:01, (b) " = 0:2, (c) " = 1, and
(d) " = 3. The true SOI power is 20 dB, and" = 0:0332 (corresponding to� = 0.2 ).

Fig. 2 shows the same type of curves as Fig. 1, but for a mis-
matched case in which 0.2 , and accordingly .
As can be seen, even a relatively smallcan cause a significant
degradation of the SCB performance. On the other hand, the per-
formance of obtained via our RCB approach is quite good for
a wide range of values of. Perhaps somewhat surprising at first
sight, the performance of SCB improves asincreases. How-
ever, there is a simple explanation for this kind of behavior of
SCB: for a small value of , the SCB has enough many DOFs
to cancel not only the interference(s) but also the SOI (which
comes from another DOA, , than the assumed one ( )
and hence is treated as an interference by SCB). This results in
a significant underestimation of . On the other hand, as in-
creases, the SCB focuses on canceling the interferences (which
are much stronger than the SOI) and hence pays less attention
to the cancelation of SOI.

IV. CONCLUSION

Beamforming is a ubiquitous task in array signal processing
with applications, among others, in radar, sonar, acoustics, as-
tronomy, communications, and medical imaging. The theoret-
ical advantages of the data-dependent beamforming approaches,
such as the SCB, over the data-independent beamformer are
easily lost when the knowledge of the array steering vector is
imprecise (as is often the case in practice). The RCB approach
introduced in this letter to cure this problem of SCB has a natural
and firm theoretical foundation, as well as a much better perfor-
mance than the SCB at a comparable computational cost. Hence,

the RCB may help restore the appeal of the data- dependent
beamforming in applications with uncertain steering vectors.
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