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Robust Capon Beamforming

Petre StoicaFellow, IEEE Zhisong WangStudent Member, IEEENd Jian Lj Senior Member, IEEE

Abstract—The Capon beamformer has better resolution and which corresponds to a uniform linear array with half-wave-
much better interference rejection capability than the standard length sensor spacing; in (@,)T denotes the transpose. Simi-
(datta-independer:jt_) betan:rf]orm_er, per\f/i_d?d th?t (tshgl?r_ray Stee’l”? larly to the previous assumption &, the form ofa(¢) above is
vector corresponding to the signal of interes is accurately ; :
known. However, whenever the knowledge of the SOI steering npt useq in the theoretical development of the RCB. Tc_) end the
vector is imprecise (as is often the case in practice), the perfor- discussion about (1), we note that the above expressioR for
mance of the Capon beamformer may become worse than that of holds for both narrowband signals and wideband signals; in the
the standard beamformer. We present a natural extension of the former caseR is the covariance matrix at the center frequency;

Capon beamformer to the case of uncertain steering vectors. The in the latter,R is the covariance matrix at the center of a given
proposed robust Capon beamformer can no longer be expressed in frequency bin.

a closed form, but it can be efficiently computed. Its excellent per- . . oy .
formance is demonstrated via a number of numerical examples. The robust beamforming problenve will deal with in this
Index Terms—Adaptive arrays, array errors, robust adaptive letter can now be briefly stated as follows: extend the Capon

beamforming, robust Capon beamforming, signal power estima- P€amformer so as to be able to accurately determine the power
tion. of SOI even when only an imprecise knowledge of its steering
vectora(fy) is available. More specifically, we assume that the
|. INTRODUCTION AND PRELIMINARIES only knowledge we have about4,) is that it belongs to the

. following uncertainty ellipsoid:
ONSIDER an array comprisingyf sensors, and |6 de-

note the theoretical covariance matrix of the array output [a(fo) —a]" C ' [a(fy) —a] < 1 )

vector. We assume th& has the following form: wherea andC (a positive definite matrix) are given. A partic-

5 . K ) . ular instance of (3), which will be considered in the numerical
R = oga(fy)a”(6) + Z ora(fr)a™(fx) +Q (1) examples, occurs when the array calibration errors are relatively
k=1 small (and can hence be neglected), but our knowledg of
where(ad, {o7}}_,) are the powers of thgk + 1) uncorrelated is inaccurate, viz. we wrongly assume that the DOA of SOl is
signalsimpingingonthearraff, {6x }~_, ) arethelocationpa- ¢, + A in lieu of 6,. In such a case, we typically will choose
rameters of the sources emitting those signals [e.g., their dirgc= a(f, + A); if we also choose€C = eI (for somes > 0),
tions of arrival (DOASs)];(-)* denotes the conjugate transposehen (3) becomes
a(-) is the array steering vector; afidlis the noise covariance 9 B
matrix (the “noise” comprises nondirectional signals; hei@e, la(fo) —al” <e a=a(fo+A) (4)
usually has full rank as opposed to the other terms in (1) whoggich is used in [1] and [2] to describe the uncertainty set of
rank is equal to one). In what follows, we assume that the firg(ao), We will make use of (4) in the numerical examples (and
termin (1) corresponds to the signal of interest (SOI) and the inly there), for the sake of simplicity. Of course, in any appli-
maining rank-one terms ti interferences. Owing to the explicit cation in which we have enough informationrmation to choose
inclusion of the interference termsin (1), we can assume, withut ¢ I so as to describe the shape of the uncertainty se(itl
being too restrictive, that the noise covariance matrix is given g well as possible, we will use (3) in lieu of (4). To continue this
Q=01 This assumption o@ is made only for the convenienceremark on (3) and (4), we note that in some cases the steering
of the numerical examples, but it hlasimportance for the theo- vector may be known to lie in an ellipsoid that is effectively flat
retical development of the robust Capon beamformer (RCB). i one or more dimensions (see [3] and [4]). In such cases, the
the numerical examples (see Section I1I), we will also make ugge of (3) may lead to a numerically ill-conditioned problem and
of the following definition of the steering vector: is not recommended. The modification of (3) to include the flat
B —jmsing —jm(M=1)sin6] T . ellipsoid case is easy [3], [4]. The modification of the RCB ap-
a(f) = [1 ¢ e ] ’ 6 = DOA proach in this letter to accommodate such a case is a bit more
complicated and will be presented elsewhere (s€§.[5]

There is significant literature on robust beamforming, and
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the formulation of standard (nonrobust) Capon beamformiiences? = 53 is indeed the largest value of for which the
(SCB) in [7] with the uncertainty set in (3) and show that theonstraint in (8) is satisfied. Note that (8) can be interpreted as a
so-obtained robust beamforming problem can be efficienttpvariance fitting problemgivenR anda(6,), we wish to de-
solved (see Section Il for details). Herein, we focus on the S@rmine the largest possible SOI testta(6,)a* (o) that can be
power estimation problem, but the proposed RCB can also &@art ofR under the natural constraint that the residual covari-
used for DOA as well as signal waveform estimation. ance matrix be positive semidefinite. Wheft,) is uncertain,

In a separate full paper [5], a detailed comparison with the® that we only know that it belongs to the set (3), a direct ex-
RCB approaches recently proposed in [1]-[4] will be providedension of the previous covariance fitting interpretation leads to
As briefly explained in Section II, the approaches in the citetie following robustified problem for estimating :
papers and the one in this letter are based on rather different for- 9

. . : ' — o%aa* >
mulations of the robust beamforming problem, and hence their ?3;“’ subject taR — o~aa™ > 0

comparison is not a straightforward task. for anya satisfying(a—a)*C~*(a—a)<1 (10)

ll. ROBUST CAPON BEAMFORMING (wherea andC are given). .
Observe that both the power and the steering vector of SOI

The common formulation of the beamforming problem thafe reated as unknowns in the above problem and, hence, that

leads to the SCB is as follows (e.g., see [8] and [9]). there is a “scaling ambiguity” in the SOI covariance term in the
a) Determine thé/ x 1 vectorwy that is the solution to the sense thato?, a) and(o?/«, o/2a) (for anya > 0) give the
following linearly constrained quadratic problem: same termy2aa*. This observation is important, as it implies
- - . thats2 obtained from (10) may easily be awerestimatef o2.
i Rw  subjectto wra(fi) =1 ®) To seoe why this is so(, trzink zf the ¥act that, for examploe, the
(in applicationsR is replaced by the sample covarianceair [02/a, at/2a(fy)] (with o < 1 and such that!/2a(f,)
matrix). belong to the uncertainty set) will be preferred by the criterion
b) Usew:Rw, as an estimate af2. The solution to (5) is in (10) (i.e.,max o’?) to the true pair 3, a(fy)]. Fortunately,
easily derived (assuming that the inversdRoéxists) this problem is easily overcome in our framework. To explain
R-a(6,) how this can be done, I€t2,4,) be the solution to (10). Be-

0= —————— (6) causel|a(fp)]|> = M [e.g., see (2)] we can simply eliminate
a*(6p)R~a(by) : el e - :
the aforementioned “scaling ambiguity” by replaciag with
Using (6) in Step b) above yields the following estimate o, = M'/24,/||a|| [so that||ag||> = M as for the true steering
g vectora(ao)]zand accordinglys2 by 6, = 62||a0]|2/M (so that
52 1 @) 628048 = b,404,). Hence, we propose to estimatg as
0o~ a*(HO)R—la(HO)'

w

22 Gpllao]|?
Gy = 00
The recent RCB approaches in [1]-[4] extended Step a) above 0 M
to take into account the fact that when there is uncertainty {,
a(bp), the constraint ow*a(fy) in (5) should be replaced with
aconstraint onv*a for any vectom in the uncertainty set. Then,

the so-obtainesb is used inw*Rw to derive an estimate of, estimatea, unlike our approach. Hence, they do not dispose of

as in Step b) of SCB. a simple way [such as (11)] to correct the overestimation of the

c Our ippro?ch i_s diﬁ‘erglnt. \_Ne7use t:hehreformulatiog ?f th§0l power that is likely a problem for all robust beamforming
apon beamforming problem in [7], which we present below | proaches (this problem was in fact ignored in [1]-[4]). Note

a 5|mple_ forT"' tq which we append the uncertamty_set n (?‘t at SOl power estimation is the main goal in many applications
Proceeding in this way, wdirectly obtain a robust estimate Ofincluding radar, sonar, and acoustic imaging

og, w!thout any ir!termediate calculation O.f the vecter To The RCB problem (10) can be readily reformulated as a
describe the details of our approach, we first prove &gain semidefinite programindeed, using a new variabje= 1/0>

(7) s the solution to the following problem (also see [7]): along with the standard technique of Schur complements (e.g.,
max o? subjectto R — o%a(fy)a* () >0 (8) see [9] and [10]) we can rewrite (10) as

(11)

. : . a2
e numerical examples in the next section confirm hais a
(much) more accurate estimatesgf thans?3.
Remark: The approaches of [1]-[4] do not provide any direct

where the notatio > 0 (for any Hermitian matrixA) means min p subject to {IE a >0
. . . .. . . p,a a P
thatA is positive semidefinite. The previous claim follows from -
the next readily verified equivalences (h@&e'/? is the Her- { Cf 2T 500 12
mitian square root cR~") (a—a) |-
R 0a(fy)a*(0) > 0 The constral_nts in (12_) ar_e.so—called linear matrix mequahugs;
s =1 . . hence, (12) is a semidefinite program that can be solved in a
—o"R™a(fp)a" ()R> >0« time that is a polynomial function ¥/ (e.g., see [10] and also
1—o%a*(6)Rta(fy) > 0 & below). In the numerical examples in Section Ill, we use the

2 o 1 SeDuMi software (see [11]) to solve (12). SeDuMi is general
g —_— =

2
~ a*(fp)R~1a(fy) 0 ©) software that can be directly applied to (12) but which does not

Q:
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Fig. 1. SOl power estimateg? (bottom dashed line}iZ (top dashed line), anéli (middle dashed line), versus for (a)c = 0.05 and (b)e = 0.5. The true
SOl power is 20 dB, and, = 0 (i.e., no mismatch).

exploit the particular structure of (12) and requires in the ordand the interference powers ar¢ = --- = 0% = 40dB.

of O(M®) floating-point operations (flops). While this is quite aThe SOI and interference directions of arrival dge= 10°,

bit more than th& (M ?) flops required by SCB, it is definitely §; = —75°, 8, = —60°, 3 = —45°, 6, = —30°, f; = —10°,
manageable. Furthermore, the structure of (12) can be exploitgd= 25°, §; = 35°, andfs = 50°. (as it will be explained

to solve this problem in a time that is comparable with that rehortly, we considek < 8). We assume a uniform linear array
quired by SCB. Such a possibility along with other computavith M = 10 sensors for which the steering vector is given by
tional issues will be investigated in [5]. Here we only provide &). We also assume that the theoretical covariance mRtii
brief account of the main idea. available (sampling effects due to the use of the sample covari-

For any givem, the solutionp, to (12) is given by [see (9)] ance matrix in lieu ofR are minor for as few as 15 snapshots
po = a*R~'a. Hence, (12) can be reduced to the followingsee [5]), and to simplify the present discussion we do not con-
problem: sider them herein).

In all the examples, we use = a(fy + A) andC = &I
mina*R™'a subjecttdla—a)"C™"(a—a) <1 (13) [asin (4)]. To show empirically that the choice ofis not a

critical issue for our RCB approach, in each case considered
Evidently, the solution to (13) will occur on the boundary of theelow we will present numerical results for several values of
constraint set (under the natural condition that the trivial steeriag\we use the notation, to denote the minimum value af
vectora = 0 does not belong to the set in (13)), and therefoigr which a(f,) belongs to the set in (4), and we letlenote
we can reformulate (13) as the following quadratic problem withny other choice of this user parameter. The aforementioned
a quadratic equality constraint: insensitivity of the performance of our approach to the choice of

e _ 1 - e (in a “reasonable” interval around) is evidently a desirable
mina®R™"a subjecttola—a)"C™(a—a)=1. (14) feature that we will illustrate numerically but will not attempt

to explain theoretically here.

This problem can be solved i@(M?) flops by using the  we will vary the number of interferences frodf = 1 to
Lagrange multiplier methodologigee [5]; also see [3] and [4] K =8. For more thark =8 interferences, we observed a certain
for a related approach). It can also be solved slightly less effierformance degradation of the RCB, which was somewhat ex-
ciently by using the second-order cone programming approasécted. Indeed, for an array wifff = 10 sensors, the SCB can
(e.g., see[12] forageneral discussion on second-order cone Righcel generally up td7 —1 =9 interferences. This is so, since
grams). In conclusion of the discussion on this aspect, note thaé spatial filterw of SCB needs one degree of freedom (DOF)
the semidefinite programming formulation of RCB is useful fofg satisfy the constraint in (5) and one DOF for nulling each in-
gaining atheoretical understandingf the RCB approach but terference: asv hasM DOFs, it follows that generally at most
it is less suitable than other formulations [such as (14)] fromg = A7 — 1 interferences can be dealt with by SCB. For the

practical implementation viewpoint. RCB, the (implicit) requirement to pass the SOI with an uncer-
tain steering vector is more demanding, and hence the number
[Il. NUMERICAL EXAMPLES of interferences that can be dealt with is smaller than nine.

Our main motivation for studying the RCB problem was an !N Figs. 1 and 2, we show botf anda, to confirm that the
acoustic imaging application where the goal was to estimate fFg"ectionin (11) was in effect necessary. In Fig. 1, we shgw
SOl power in the presence of strong interferences as well &s anda, versusk,, for the no-mismatch case; hende= 0
some uncertainty in the SOI DOA. Consequently, in this setft (4) and consequently, = 0. As can be seen from Fig. 1,
tion we consider scenarios with several strong interferencéise performance degradation éﬁ compared withz2, in this
in which the estimation of the SOI power is particularly chalidealsituation for the SCB, is minor; moreover, this degradation
lenging. We assume a spatially white noise whose covariarinereases only slightly with increasiagWe also see from Fig. 1
matrix is given byQ = I. The power of SOl iy = 20dB, (and Fig. 2) that? significantly overestimates? as predicted.
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Fig. 2. SOl power estimateg (bottom dashed line};? (top dashed line), anﬁz (middle dashed line), versus for (a)e = 0.01, (b)e = 0.2,(c)e = 1, and
(d) e = 3. The true SOI power is 20 dB, and = 0.0332 (corresponding ta\ = 0.2°).

Fig. 2 shows the same type of curves as Fig. 1, but for a mike RCB may help restore the appeal of the data- dependent
beamforming in applications with uncertain steering vectors.

matched case inwhich = 0.2°, and accordingly, = 0.0332.

As can be seen, even a relatively smaltan cause a significant

degradation c2)f the SCB performance. On the other hand, the per-
formance oﬁo obtained via our RCB approach is quite good for 1]

awide range of values ef Perhaps somewhat surprising at first

sight, the performance of SCB improves/idncreases. How-
ever, there is a simple explanation for this kind of behavior of [l

SCB: for a small value ok, the SCB has enough many DOFs

to cancel not only the interference(s) but also the SOI (which[3]

N
[5]
creases, the SCB focuses on canceling the interferences (which

6] M. A | P “Opti forming for co-
are much stronger than the SOI) and hence pays less attentlo[ﬁ] grawal and S. Prasad, "Optimum broadband beamforming for co

comes from another DOA),, than the assumed oné,(+ A)

and hence is treated as an interference by SCB). This results i

a significant underestimation ef. On the other hand, & in-

to the cancelation of SOI.

IV. CONCLUSION

(7]

Beamforming is a ubiquitous task in array signal processing

with applications, among others, in radar, sonar, acoustics, as-
tronomy, communications, and medical imaging. The theoret-[9]

ical advantages of the data-dependent beamforming approaches, 7. _
] L.Vandenberghe and S. Boyd, “Semidefinite programmiS$&M Rev.

such as the SCB, over the data-independent beamformer

easily lost when the knowledge of the array steering vector ig 1)
imprecise (as is often the case in practice). The RCB approach

introduced in this letter to cure this problem of SCB has a natur
and firm theoretical foundation, as well as a much better perf
mance than the SCB at a comparable computational cost. Hence,

or-

%o
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