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Performance Analysis of Multivariate Complex
Amplitude Estimators
Luzhou Xu and Jian Li, Senior Member, IEEE

Abstract—We consider multivariate complex amplitude es-
timation in the presence of unknown interference and noise.
Two multivariate approaches [Maximum Likelihood (ML) and
Capon] are provided. We derive the closed-form expression of the
Cramér–Rao bound (CRB) for the unknown complex amplitudes.
We also analyze the bias properties and Mean Squared Errors
(MSE) of the two estimators. A comparative study shows that the
multivariate ML estimator is unbiased, whereas the multivariate
Capon estimator is biased downward for finite snapshots. Both es-
timators are asymptotically statistically efficient when the number
of snapshots is large.

Index Terms—Capon, complex wishart, Cramér–Rao bound,
growth curve, ML, multivariate parameter estimation.

I. INTRODUCTION

E STIMATING unknown signal parameters in the presence
of unknown interference and noise via array processing is

an important common problem in signal processing. It is well-
known that the signal temporal information can be utilized to ef-
fectively suppress the interference and noise and hence improve
the estimation accuracy (see, e.g., [1]–[10]). Recently, the com-
plex amplitude estimation in the known waveform and steering
vector case was studied in [11], where both the temporal and
spatial information of a single signal are known and exploited
for interference suppression. In [11], both Capon and Maximum
Likelihood (ML) estimators are considered. Through theoret-
ical and numerical analyses, it has been shown that both estima-
tors are asymptotically statistically efficient for large number of
snapshots, although Capon is biased downward for finite snap-
shots, while ML is unbiased. The focus of [11] is on the estima-
tion of a scalar parameter, i.e., the univariate amplitude estima-
tion problem. However, in some practical applications, we need
to estimate a matrix rather than a scalar parameter, and, hence,
multivariate parameter estimators should be considered [12].

In this paper, we consider the following multivariate complex
amplitude estimation problem:

(1)

In (1), denotes the observed snapshots with being
the number of snapshots. The columns in are the
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known linearly independent spatial vectors, e.g., steering vec-
tors. The rows in are the known temporal vectors,
e.g., waveforms, assumed to be linearly independent of each
other or not completely correlated with each other. The matrix

contains the multivariate unknown complex am-
plitudes. Throughout this paper, we assume that and

. The columns of the interference and noise ma-
trix are statistically independent circularly sym-
metric complex Gaussian random vectors with zero-mean and
unknown covariance matrix . The problem of interest is to es-
timate the unknown matrix .

We note that the data model of (1) has general appli-
cations. Its real-valued counterpart, which is called the
Growth-Curve Model, has been studied and used widely for
investigating growth problems in the statistics field [13]–[15].
This real-valued Growth-Curve model was extended and intro-
duced to the signal processing field in [12]. Using the extended
model, the authors in [12] unified many existing algorithms
proposed for radar array processing (e.g., [16], [17]), spectral
analysis (e.g., [18], [19]), and wireless communication (e.g.,
[20]–[23]) applications.

The focus of this paper is on the performance analysis of the
multivariate ML and Capon estimators for the data model in (1).
We derive the closed-form expression of the CRB of the un-
known complex amplitude parameters. We also analyze the bias
properties and MSE of the two estimators. A comparative study
shows that the multivariate ML estimator is unbiased whereas
the multivariate Capon estimator is biased downward for finite
snapshots. Yet in finite data samples and at low SNR, Capon can
provide a smaller MSE than ML. Both estimators are asymp-
totically statistically efficient when the number of snapshots is
large.

The remainder of the paper is organized as follows. Section II
provides the multivariate Capon and ML estimators. Section III
gives the performance analysis of the two estimators and the
CRB of the unknown complex amplitudes. Numerical examples
are provided in Section IV. Finally, we present our conclusions
in Section V.

II. MULTIVARIATE PARAMETER ESTIMATION

Based on the data model in (1), we describe the multivariate
Capon and ML estimators in this section.

A. Multivariate Capon Estimation

The multivariate Capon estimator consists of two main steps.
The first is the Capon beamforming [24]–[26]. The other is the
Least-Squares (LS) estimation [27], [28], which is basically the
matched filtering.
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We first consider the Capon beamforming. Let

(2)

where denotes the conjugate transpose of a matrix. Then,
the Capon beamformer can be formulated as follows:

tr subject to (3)

where is a multivariate weighting matrix for noise and in-
terference suppression while keeping the desired signals undis-
torted. Solving the above optimization problem yields

(4)

Note that since and the columns in are linearly in-
dependent of each other, has full rank with prob-
ability one.

The beamforming output, which is denoted by , is

(5)

Now we consider the LS estimation. Substituting (1) into (5)
yields

(6)

Estimating from based on (6) is a standard Multivariate
Analysis of Variance (MANOVA) problem [12]–[14]. Note that
after spatial beamforming, the noise vectors remain temporally
white, and hence the LS estimator gives the best performance.
Using the LS algorithm yields

(7)

Substituting (5) into (7), the multivariate Capon estimator has
the form

(8)

Note that the Capon estimator for the univariate case in [11] is
a special case of (8).

B. Multivariate Maximum Likelihood Estimation

A general derivation of the multivariate ML estimator has
been given in [12]. In our data model, and are both full rank,
and hence, the multivariate ML estimator can be simplified as
follows:

(9)

where

(10)

Note again that the ML estimator for the univariate case in [11]
is a special case of (9).

To better understand the above ML estimator intuitively, we
insert (1) into (10) and get

(11)

It shows that is an estimate of the unknown noise
covariance . We also note that the estimator in (9) can
be divided into two steps, including the ML beamforming
spatially, corresponding to the left-multiplication matrix

, and the LS estimation temporally,
corresponding to the right-multiplication matrix .

Note that like the univariate case in [11], the only difference
between the Capon and ML estimators is that the matrix in
(8) is replaced by in (9). However, as we will show in the
following analysis, this seemingly minor difference in fact leads
to significant and interesting performance differences between
the two estimators.

III. PERFORMANCE ANALYSIS

A. Performance Analysis of the Multivariate ML Estimator

The statistical performance analysis of the multivariate ML
estimator has been considered in [15], where the variables are all
restricted to be real-valued. Using the similar technique, we can
extend the conclusions in [11] and [15] to the complex-valued
and multivariate cases, respectively. Due to space limitations,
we present below Theorem 1 without the detailed proof.

Theorem 1: For the data model in (1), the multivariate ML
estimate of , given by (9), is unbiased and asymptotically sta-
tistically efficient for large number of data samples. Its MSE
matrix can be expressed as

MSE vec vec

CRB (12)

where

CRB (13)

vec and denote the direct operator (stacking
the columns of a matrix on top of each other), complex conju-
gate, transpose and Kronecker product of matrices, respectively.

In (12) and (13), CRB is the CRB of , which represents
the best possible performance bound for any unbiased estimator.
The detailed derivation and discussion on CRB are given in
Appendix A.

It should be noted that, in addition to the complex conjugate,
the coefficient in (12) is also different from its real-valued coun-
terpart (see [15, Th. 3.3]). It is due to the fact that the lemma
on the mean of real-valued inverted Wishart matrices (see [15,
Lemma 3.3] or [13, Th. 2.4.6]) is not directly applicable to the
complex-valued case. It should be revised as follows.

Lemma 1: Let be an random matrix with the com-
plex Wishart distribution with covariance matrix and
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degrees of freedom [29]–[31], denoted by
CW . Then

(14)

From (12), we note that MSE approaches CRB
for large , which means that the multivariate ML estimator is
asymptotically statistically efficient for large number of snap-
shots . Hence, the efficiency condition for the univariate case
in [11] can be extended to the multivariate case as well.

Furthermore, the CRB of depends on and
. As we show in Appendix A, orthogonalities

among the rows of and among the columns of lead
to small diagonal elements for and ,
respectively, which in turn reduce the CRB.

We also note that when , which implies that is a
square matrix, the multivariate ML estimator is efficient. How-
ever, we should not think of it as a significant advantage to
make as large as possible. As we show in Appendix A, in the
case that the columns of are not orthogonal to each
other, which often happens in practice, large causes CRB to
increase.

B. Performance Analysis of the Multivariate Capon Estimator

We now establish the theoretical properties of the multivariate
Capon estimator.

1) Bias Analysis: In Section III-A, we know that the mul-
tivariate ML estimator is unbiased. We will investigate the bias
of the multivariate Capon estimator by studying the relationship
between the two estimators.

By (1) and (9), we know that the error of the multivariate ML
estimate of is

(15)

where .
On the other hand, comparing (2) and (10), we note that

(16)

Applying the matrix inversion lemma gives

(17)

and

(18)

Substituting (17) and (18) into (8), and after some straightfor-
ward manipulations, we get

(19)

where

(20)

with

(21)

Then, inserting (1) into (21) gives

(22)

Note that there are two random matrices, i.e., and , in
(15) and (22). Since the columns of are statistically indepen-
dent zero-mean Guassian random vectors while the columns of

are orthogonal to those of , by the prop-
erty of joint Gaussian distribution, we know that and

are two independent Gaussian random ma-
trices. Hence, and are also independent
of each other. By [15, Lemmas 1.9 and 1.11], which can be
readily extended to the complex-valued case, we have
CN and CW (see [15, (2.38)]).

Since and are statistically independent of each other
and by (15) and (22), we know that is an odd
function with respect to . Hence, replacing with
yields

(23)

On the other hand, since is a zero-mean Gaussian random
matrix, , as a random matrix transformed from , retains
all the statistical properties of . Hence, replacing by
will not change the expectation of , i.e.,

(24)

It follows from (23) and (24) that

(25)

Therefore, by (19) and (25), we have

(26)

To calculate the expectation of , we use the same technique
in [15] to simplify and via the transformations of random
matrices. Let

(27)

and

(28)

which obviously have the CW and CN
distributions, respectively. Furthermore, denote

(29)

Then, we get

(30)
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Since , we can decompose as

(31)

where is an unitary matrix with its first columns
being . Since is unitary, we have

CW (32)

and

CN (33)

We next partition , and , respectively, as
follows:

and

(34)

where and are and , respectively,
and both and are matrices.

Inserting (31) to (34) into (30) gives

(35)

From (20) and (35) and by the matrix inversion lemma, it
follows that

(36)

To calculate the expectation of , we use the following
lemma.

Lemma 2: Let and be two independent random
matrices, and

CN CW (37)

Denote . Then the expectation and
correlation matrices of the random matrix are as follows:

(38)

vec vec vec

vec (39)

where is a scalar and approximately equal to
for large , and is a matrix

with its element at the th row and the
th column being

when but
when but
otherwise

(40)

Proof: See Appendix B.
Applying the above lemma to and , which by construction

satisfy the assumptions in the lemma, we have immediately

(41)

Inserting (41) into (26), we get

(42)

The above equation shows that the multivariate Capon estimator
shares the same properties as the univariate Capon in [11]. In
other words, it is biased downward for finite snapshot number

. However, for large , it is asymptotically unbiased. It is also
worth noting that the bias of the Capon estimator is not related
to , which means that increasing the number of rows in the
temporal information matrix will not cause higher bias.

Moreover, we note that when , the multivariate
Capon estimator becomes unbiased as the multivariate ML
estimator. In this case, both ML and Capon reduce to the same
estimator . Hence, for the same reason
that we have stated in Section III-A, this unbiasedness of the
multivariate Capon estimator should not be seen as a significant
advantage.

2) Mean-Squared-Error Analysis: We investigate the MSE
of the multivariate Capon estimator below. Using the same tech-
nique to obtain (25), we can prove that and are
uncorrelated. Hence, from (15) and (19), we have

MSE

vec vec

vec vec

vec vec

vec vec (43)

We first calculate vec vec .
Following the definitions in (27), (28) and (29) and inserting

them into (15), we get

(44)
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Then, we adopt the decomposition in (31), the definitions in
(32) and (33), and the partitions in (34), and insert them into
(30). By the inversion lemma of partitioned matrices

(45)

By (45) and (36), we have

(46)

Using the fact that vec vec as well as
(13) yields

vec vec CRB CRB

(47)

where

vec

vec (48)

Then, using the lemma that vec vec and
the fact that and are independent standard matrix-variate
Gaussian distributions, after some manipulations, we get

vec vec

(49)

Note that

vec vec

vec vec

(50)

To get the above equation, we have utilized [30, Lemma 2],
i.e., CN . Hence, by the complex-valued
counterpart of [15, Lemma 1.8], we know that the covariance
matrix of vec given is .

Inserting (50) into (49) and recalling (36) and (41) yield

(51)

From (47) and (51), the equation below follows directly:

vec vec CRB (52)

Now, we consider the second term in (43). By (36), we know
that

(53)

We know that and are independent of each other with
CN and CW distri-
butions, respectively. Then using the fact that vec

vec , the following equation is obtained following
Lemma 2:

vec vec

vec

vec

vec vec

(54)

where is a matrix defined as (40), and is a
scalar and approximately equal to

for large .
By (43), (52), and (54), we get the MSE of the multivariate

Capon estimator as follows:

MSE CRB

vec vec

(55)

Equation (55) gives an approximate closed-form expression
of the MSE of the multivariate Capon estimator. In this equa-
tion, we note that the MSE consists of three terms. The first term
is proportional to CRB . The second term is proportional to
the outer-product of and is not related to the parameter

and the temporal information matrix . In the third term, al-
though there is no explicit dependence of the parameter , the
number of nonzero elements in is dependent of . Hence,
the third term will increase as increases. Moreover, the third
term is a function of , which depends on the the cor-
relation among the rows of . As we will see in the following
numerical simulations, for with correlated rows, the MSE of
an element of increases as increases and/or as the other
elements in increase. On the contrary, when , the third
term is zero because the matrix becomes a scalar 0 according
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to its definition. If we further set , then (55) reduces to
the conclusion in the univariate case in [11].

We also note that when the number of snapshots is large,
the last two terms approach zero while the first term approaches
CRB . Hence, the multivariate Capon estimator is also
asymptotically statistically efficient for large .

Furthermore, we note that when , the MSE of the
multivariate Capon estimator is simplified to CRB like the
multivariate ML estimator. This is consistent with our conclu-
sion in the above subsection that the two multivariate methods
reduce to the same estimator when . For the same reason
that we stated in Section III-A, this efficiency of the multivariate
Capon estimator should not be seen as a significant advantage.

Now, we summarize the statistical properties of the multi-
variate Capon estimator by the following theorem.

Theorem 2: For the data model in (1), the multivariate Capon
estimate of in (8) is biased downward. However, for large
number of data samples, it is asymptotically unbiased and sta-
tistically efficient. Its bias and MSE matrices are given by (42)
and (55), respectively.

IV. NUMERICAL EXAMPLES

In this section, several numerical examples are presented to
verify the performance analysis results of the two multivariate
estimators. We consider a uniform linear array with sen-
sors and half-wavelength spacing. We assume signals
arriving at the sensor array with Direction of Arrival (DOAs) of
0 and 15 relative to the array normal. Unless specified other-
wise, we assume that and SNR dB and is formed
by complex sinusoids with unit amplitudes and frequen-
cies Hz and Hz, respectively. Except in Fig. 6, the
elements in are all set to be 1. The interference and noise
term in our data model in (1) is temporally white but spatially
colored zero-mean circularly symmetric complex Gaussian with
the spatial covariance matrix given by

(56)

where SNR, and denotes the th row and th column
element of a matrix. The figure below are all for . The fig-
ures for other elements of are similar. We obtain the empirical
results in Fig. 2, using 10 000 Monte Carlo trials while the others
use 1000 trails.

We first investigate the bias performance. Fig. 1 shows the
bias properties of the two multivariate estimators (denoted by
“MV-ML” and “MV-Capon”) from both theoretical predic-
tions (denoted by “Theo.”) and Monte Carlo trials (denoted
by “Empi.”). As expected, the multivariate ML is unbiased
whereas Capon is biased downward for finite snapshots. How-
ever, when the number of snapshots is large, the bias of
the multivariate Capon approaches zero, as predicted by our
theoretical analysis.

Fig. 2 illustrates the relationship between the bias and the
number of rows of the temporal information matrix , i.e., ,
when the frequency difference of the complex sinusoids in is
0.04 Hz. As predicted by our theoretical analysis, the bias of the
multivariate Capon estimator is independent of .

Fig. 1. Bias versus L when SNR = 10 dB, and K = 2; N = 2.

Fig. 2. Bias versus K when SNR = 10 dB, and L = 16;N = 2.

Fig. 3. MSE versus L when SNR = 10 dB, and K = 2;N = 2.

Fig. 3 illustrates the MSEs of the multivariate estimators as
well as the CRB as a function of . As illustrated, the theoret-
ical and empirical MSE’s are consistent. The performance of the
multivariate ML estimator is better than the multivariate Capon
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Fig. 4. MSE versus SNR when L = 16; K = 2, and N = 2.

Fig. 5. MSE versus K when SNR = 10 dB, L = 16, and N = 2.

and very close to the corresponding CRB. As we have predicted
in Section III, both multivariate estimators are asymptotically
statistically efficient for large number of snapshots, and the per-
formance curves of the two estimators approach the CRB as
increases.

Fig. 4 shows the relationship between the MSE and SNR.
Note that the error floor occurs at high SNR for the multivariate
Capon estimator due to its bias. As shown in our theoretical
analyses, for a fixed , , , and , the MSE of ML is pro-
portional to CRB , and hence, no “threshold effect” occurs.
Note also that like in the univariate case, the Capon estimate
can provide a smaller MSE than ML at low SNR. At such a low
SNR, however, both ML and Capon perform poorly.

Fig. 5 gives the MSEs of the multivariate Capon and ML es-
timators as well as the corresponding CRB as a function of
when the frequency difference of the complex sinusoids in is
0.04 Hz. As we can see, both the CRB and the MSEs of the two
multivariate estimators increase as increases. However, due
to the contribution of the third term in (55), the MSE of Capon
increases more quickly than the CRB and the MSE of ML.

Fig. 6. MSE versus � when SNR = 10 dB, L = 16;K = 2; and N = 2.

In Fig. 6, we consider the case where has unequal elements.
We set and

, where is the power ratio between the two complex si-
nusoids in . Fig. 6 gives the CRB and MSEs of as
varies. As illustrated, the MSE of the multivariate ML estimator
is almost constant with respect to , whereas the MSE of the
multivariate Capon estimator increases rapidly when is de-
creased to be lower than 0 dB due to its biased nature.

V. CONCLUSION

We have investigated the theoretical performance of two mul-
tivariate parameter estimators, namely, the multivariate Capon
and ML estimators. Through theoretical analysis and numerical
simulations, we conclude that the multivariate ML estimator is
unbiased, whereas the multivariate Capon estimator is biased
downward for finite snapshots, and both estimators are asymp-
totically statistically efficient when the number of snapshots is
large.

APPENDIX A
CRAMÉR–RAO BOUND

In the data model in (1), both and are unknown. Let
denote the vector containing the real-valued unknowns in

and . Then, the th element of the corresponding Fisher
information matrix (FIM) [25], [26] is

FIM tr

Re tr (57)

where tr denotes the trace of a matrix, Re and Im de-
note the real and imaginary parts of a complex number (or ma-
trix), respectively, and denotes the th element of . Because

and depend on the different variables in , FIM will be a
block diagonal matrix with respect to the unknowns in and

. Hence, we can calculate the CRBs of and separately. In
this paper, we are only interested in the CRB of .
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Let and denote the real and imaginary parts of the
th element in , respectively. The corresponding elements

in FIM with respect to any two real-valued unknowns in are
as follows:

FIM Re (58)

FIM Im (59)

FIM Im (60)

FIM Re (61)

where and are the th
row vector in and th column vector in , respectively.

Arranging the complex-valued matrix to form a real-valued
vector as follows:

Re vec Im vec (62)

and arranging (58) to (61) to a matrix according to , we get the
corresponding FIM

FIM
Re Im
Im Re

(63)

where

(64)

Using the matrix inversion lemma and the inversion lemma of
partitioned matrices [32], we get the CRB in real-valued form:

CRB FIM
Re Im
Im Re

(65)

Transforming the above real-valued CRB into the com-
plex-valued form yields

CRB CRB vec

(66)

Clearly, the diagonal elements of CRB are determined
by the diagonal elements of and . To
study the influences of the temporal information matrix and
the spatial information matrix on CRB , we denote

and . Without loss of generality, we
consider the CRB of , i.e., the element on the first column and
first row of . Partition and as follows:

(67)

(68)

Obviously, CRB . By the inversion
lemma of partitioned matrices [32], we have

(69)

(70)

In (69), is the Euclidean norm square of
the first row of . It is easily verified that is a positive
definite matrix while . Therefore, is
minimized when , i.e., .
Hence, to minimize CRB , the row vectors in should be
orthogonal to each other.

Similarly, is minimized when , i.e.,
. Note that when

this condition is not satisfied, large causes to increase.
Furthermore, We note that . Therefore, when

is proportional to the eigenvector of corresponding to its
smallest eigenvalue, is minimized. Therefore, to mini-
mize CRB , the columns of should be orthogonal
to each other and the columns of should correspond to the
subspace spanned by the eigenvectors of corresponding to
its smallest eigenvalues. Since is unknown and usually
is given and cannot be changed in practice, we can only hope
for these conditions of .

APPENDIX B
PROOF OF LEMMA 2

Let be any nonzero vector. We first consider the ex-
pectation of .

Decompose as follows:

(71)

where is a unitary matrix with its first column being
and .

Let ; obviously CN . Let
be the th column vector of . Let
; obviously CW

[31]. Then

(72)

It has been shown in [16, Appendix] that

(73)

Hence [33]

(74)
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From (72) and (74), we have

(75)

The above equation should be satisfied for any nonzero
vector , which means . To calculate

vec vec , we need to calculate

(76)

where denotes the element in denotes
the th column vector in , and .

Note that (76) is a function of . Adopting
the same technique used to obtain (25), we can easily show that
the expectation is zero when (76) contains odd numbers of ,
e.g.,

.
When but

. Replacing by , where
is the unit of the imaginary number, yields

(77)

On the other hand, since is a zero-mean circularly symmetric
complex Gaussian random vector, , as a random vector
transformed from , has the same statistical property as .
Hence

(78)

Hence, by (77) and (78), we have .
Besides the above cases, there are three cases left in which

is nonzero, i.e.,

i) ;
ii) but ;
iii) but .

We know that the expectation in each case is equal. For con-
venience, we denote the expectations in the three cases as

, and , respectively.
First, we calculate . Let ,

which obviously has the CW distribution. Then

(79)

Again, using the conclusion in [16, Appendix], we know

(80)

Calculating the expectation and the second-order moment of the
above distribution and substituting them into (79) yields

(81)

Second, we consider . It is difficult to calculate
this expectation directly. However, note that can
be expressed as the sum of the outer-products of complex
Gaussian random vectors with zero mean and covariance . By
the Law of Large Numbers [33], for large , it approaches

in probability. Hence

(82)

Third, in order to calculate , we use the fact that

(83)

This equation can be proved as follows. Let us make a transfor-
mation from to .
Obviously, and are two in-
dependent standard complex Gaussian random vectors and re-
tain the same statistical properties of . Hence, replacing

by the new random vectors in , the expecta-
tion will not change:

(84)

From (84), (83) is proved.
Using the facts of (81)–(83) and arranging into
vec vec , (39) follows immediately.
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