1. Consider the data set

$$\mathbf{x}_l = \beta \mathbf{a} s_l + \mathbf{e}_l, \quad l = 1, 2, \cdots, L,$$

where \mathbf{x}_l denote the *l*th $M \times 1$ data vector, $\mathbf{a} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T$ (an $M \times 1$ vector) with ()^T denoting the transpose, β is a complex-valued unknown scalar, $\{s_l\}$ is the known signal waveform, and \mathbf{e}_l denotes the *l*th error vector. The error vectors \mathbf{e}_l , $l = 1, 2, \cdots, L$, are independently and identically distributed zero-mean circularly symmetric complex Gaussian random vectors with an unknown and arbitrary covariance matrix \mathbf{Q} . The problem of interest herein is to determine the maximum likelihood (ML) estimate of β from $\{\mathbf{x}_l\}_{l=1}^L$ and its Cramer-Rao bound (CRB).

- a) Determine the log-likelihood function (logarithm of the pdf) l_1 of $\{\mathbf{x}_l\}_{l=1}^L$.
- b) Derive the ML estimate of β . (Consider first setting $\partial l_1 / \partial \mathbf{Q}_{ij} = 0$, where \mathbf{Q}_{ij} denotes the *ij*th element of \mathbf{Q} .)
- c) Calculate the CRB of β .
- d) Perform the following numerical simulations. Let M = 5, L = 50, $\{s_l\}$ be a sequence consisting of 1's and 0's with equal probability (fixed for all Monte-Carlo trials), and

$$\mathbf{Q} = \sigma^2 \left[\begin{array}{cccc} 1 & \rho & \rho^2 & \rho^3 \\ \rho & 1 & \rho & \rho^2 \\ \rho^2 & \rho & 1 & \rho \\ \rho^3 & \rho^2 & \rho & 1 \end{array} \right].$$

Generate 100 realizations of the data vectors using different error realizations for each mean-squared error (MSE) evaluation of the ML estimate of β . Consider $\rho =$ 0,0.5,0.9. For each case, generate the MSE of the ML estimate of β as a function of σ^2 and compare with the corresponding CRB. Comment on the effect of ρ .

e) Write a report that details your findings. Be concise and complete.

2. Consider the data set \mathbf{y}_l , $l = 1, \dots, L$, where $\{\mathbf{y}_l\}$ are i.i.d. zero-mean circularly symmetric complex Gaussian random vectors with covariance $\alpha \mathbf{Q}_0 + \beta \mathbf{Q}_1$, where \mathbf{Q}_0 and \mathbf{Q}_1 are known, $\alpha \ge 0$ and $\beta \ge 0$ are unknown real-valued non-negative scalars.

- a) Determine the log-likelihood function (logarithm of the pdf) of $\{\mathbf{y}_l\}_{l=1}^L$.
- b) Derive the ML estimates of α and β .
- c) Calculate the CRB of α and β .
- d) Perform some numerical simulations comparing the MSE of the ML estimates of α and β with the corresponding CRB.
- e) Write a report that details your findings and insights. Be concise and complete.