1. If we wish to model the true PSD

$$
P_{x x}(f)= \begin{cases}2 & \text { for }|f| \leq 0.25 \\ 0 & \text { for } 0.25<|f| \leq 0.5\end{cases}
$$

by the Gaussian PSD (see the course slides on the web), then $r_{x x}[0]$ and σ_{f} must be estimated. Assume that enough data are available so that the ACF estimates $\hat{r}_{x x}[0], \hat{r}_{x x}[1]$ are equal to the true ACF samples. Find the estimates of the unknown parameters by letting

$$
\begin{aligned}
& r_{x x}[0]=\hat{r}_{x x}[0] \\
& r_{x x}[1]=\hat{r}_{x x}[1]
\end{aligned}
$$

where $r_{x x}[0], r_{x x}[1]$ are the ACF samples corresponding to the Gaussian PSD model. Plot the estimated PSD.

Hint:
(a) To make the problem easier, let

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}} P(f) e^{j 2 \pi f n} d f \approx \int_{-\infty}^{\infty} P(f) e^{j 2 \pi f n} d f
$$

(b) Plot both true PSD and estimated Gaussian PSD on the same plot. Use MATLAB.
(c) Discuss the method accuracy when used to estimate $P(f)$ that satisfies the model. How do the parameters in the model affect the approximation in (a) above?
2. Prove that a necessary and sufficient condition for $\mathcal{A}(z)=1+a[1] z^{-1}+a[2] z^{-2}$ to be minimumphase is that $\left|k_{1}\right|<1,\left|k_{2}\right|<1$. Restrict the proof to the case of real $a[1], a[2]$ coefficients.

Hint:
(a) The roots may be both real or both complex. Assume $x(n)$ is real.
(b) The k_{1} and k_{2} are defined in Levinson-Durbin algorithm. Show that k_{1} and k_{2} are real.
(c) Show that

$$
1+a[1] z^{-1}+a[2] z^{-2}=1+k_{1} z^{-1}+k_{2} z^{-2}\left(k_{1} z+1\right)
$$

(d) Let α be a root of $1+a[1] z^{-1}+a[2] z^{-2}=0$. Show that

$$
k_{2}=-\alpha \frac{\alpha+k_{1}}{k_{1} \alpha+1} \triangleq-\alpha q
$$

(e) Show that if $\left|k_{1}\right|<1$,

$$
|q|^{2}= \begin{cases}\geq 1, & \text { for }|\alpha| \geq 1 \\ <1, & \text { for }|\alpha|<1\end{cases}
$$

3. Use straightforward and LDA methods to solve

$$
\left[\begin{array}{ccc}
1 & 0.9 & 0.7 \\
0.9 & 1 & 0.9 \\
0.7 & 0.9 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
\sigma^{2} \\
0 \\
0
\end{array}\right]
$$

4. Consider the problem of fitting the data $\{x[0], x[1], \ldots, x[N-1]\}$ by the sum of a DC signal and a sinusoid as

$$
\hat{x}[n]=\mu+A_{c} \exp \left(j 2 \pi f_{0} n\right), \quad n=0,1, \ldots, N-1
$$

The complex DC level μ and the complex sinusoid amplitude A_{c} are unknown. We may view the determination of μ, A_{c} as the solution of the over-determined set of linear equations

$$
\left[\begin{array}{cc}
1 & 1 \\
1 & \exp \left(j 2 \pi f_{0}\right) \\
\vdots & \vdots \\
1 & \exp \left(j 2 \pi f_{0}[N-1]\right)
\end{array}\right]\left[\begin{array}{c}
\mu \\
A_{c}
\end{array}\right]=\left[\begin{array}{c}
x[0] \\
x[1] \\
\vdots \\
x[N-1]
\end{array}\right]
$$

Find the least squares solution for μ and A_{c}. Now assume that $f_{0}=k / N$, where k is a nonzero integer in the range $[-N / 2, N / 2-1]$ for N even and $[-(N-1) / 2,(N-1) / 2]$ for N odd and again find the least squares solution.
5. For AR signals whose poles are near the unit circle, it is also better to use $\hat{r}(k)$ with large lags. Derive over-determined Yule-Walker equations for $\operatorname{AR}(p)$ signals.
6. Prove that for an $\mathrm{AR}(p)$ signal

$$
\delta_{p}=\delta_{p+1}=\delta_{p+2}=\cdots
$$

This result also means that for an $\operatorname{AR}(p)$ signal, the linear prediction error remains constant when the linear prediction order is greater than or equal to p .
7. Consider an $\operatorname{AR}(3)$ signal. Show that $r(0), r(1), r(2), r(3)$ are functions of a_{1}, a_{2}, a_{3} and σ^{2}.
8. Show that the exact likelihood function for a real Gaussian $\operatorname{AR}(p)$ process is

$$
p\left(\mathbf{x} ; \mathbf{a}, \sigma^{2}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{N / 2} \operatorname{det}^{1 / 2}\left(\overline{\mathbf{R}}_{x x}\right)} \exp \left[-\frac{1}{2 \sigma^{2}} S(\mathbf{a})\right]
$$

Figure 1: Diagram of filtering in Problem 9.
where

$$
S(\mathbf{a})=\sum_{n=p}^{N-1}\left(\sum_{k=0}^{p} a[k] x[n-k]\right)^{2}+\mathbf{x}_{0}^{T} \overline{\mathbf{R}}_{x x}^{-1} \mathbf{x}_{0}
$$

and $\mathbf{x}_{0}=[x[0] x[1] \cdots x[p-1]]^{T}$. The autocorrelation matrix $\overline{\mathbf{R}}_{x x}$ is the usual autocorrelation matrix $\mathbf{R}_{x x}$ divided by σ^{2}. Note that $\overline{\mathbf{R}}_{x x}$ depends only on the AR filter parameters.

Hint:
(a) See Notes and Problem 7 for better understanding.
(b) The $p\left(\mathbf{x} ; \mathbf{a}, \sigma^{2}\right)$ is PDF of \mathbf{x} given \mathbf{a} and σ^{2}. This is equivalent to our notes notation $f(x[0], \ldots, x[N-$ 1]| $\left.a_{1}, \ldots, a_{p}, \sigma^{2}\right)$.
9. Consider the following filtering problem in Figure 1.

Let $\{x(n)\}$ be zero mean, $r_{x x}(k)=\alpha^{|k|}$. Let $\{w(n)\}$ be zero mean, white, i.e., $r_{w w}(k)=\rho \delta(k)$. Assume $\{x(n)\}$ and $\{w(n)\}$ are uncorrelated, we wish to find optimal $H(z)$ to predict $x(n)$. Let $\alpha=0.8, \rho=1$:
(a) Find optimal noncausal $h(k)$.
(b) Find optimal causal $h(k)$.
(c) Let $H(z)=\sum_{k=-L}^{L} h(k) z^{-k}$, find an expression for the optimal $h(k)$. Let $L=1$, find $h(-1)$, $h(0), h(1)$.

