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Sample Mean and Sample Variance:

Their Covariance and Their (In)Dependence

Lingyun Zhang

It is of interest to know what the covariance of sample mean
and sample variance is without the assumption of normality.
In this article we study such a problem. We show a simple
derivation of the formula for computing covariance of sample
mean and sample variance, and point out a way of constructing
examples of “zero covariance without independence.” A small
example is included to help teachers explain to students.
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1. INTRODUCTION

We define sample mean X̄ = ∑n
i=1 Xi/n and sample vari-

ance S2 = ∑n
i=1(Xi − X̄)2/(n − 1), where {X1, X2, . . . , Xn}

comprises a random sample from some a population. It is well
known that X̄ and S2 are independent if the population is nor-
mally distributed. Now, naturally we can ask a question: Are X̄

and S2 independent without the assumption of normality?
The answer to the above question is “No” according to the

following theorem found in Lukacs (1942).

Theorem: If the variance (or second moment) of a population
distribution exists, then a necessary and sufficient condition for
the normality of the population distribution is that X̄ and S2 are
mutually independent.

Remark: That the normality is a necessary condition for the in-
dependence between X̄ and S2 was first proved by Geary (1936)
using a mathematical tool provided by R. A. Fisher, but the proof
in Lukacs (1942) is easier to understand.

This theorem is beautiful. The theorem shows that the in-
dependence between X̄ and S2 is unique—it holds only for
normally distributed populations (provided that the second mo-
ment of the population distribution exists). If the population is
normally distributed, the covariance of X̄ and S2, denoted by
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cov(X̄, S2), is 0 because of their independence; but generally
what is cov(X̄, S2)? This article is to answer such a question.

The rest of the article is organized as follows. In Section
2, we show a simple derivation of the formula for computing
covariance of X̄ and S2, followed by a small example in Section
3.

2. COVARIANCE OF X̄ AND S2

Proposition: If the third moment of the population distribution
exists, then

cov(X̄, S2) = µ3

n
, (1)

where µ3 is the third central moment of the population distribu-
tion and n is the sample size.

Formula (1) was published by Dodge and Rousson (1999),
and to comment on its elegance we quote a sentence from the
article: “. . . statistical theory provides beautiful formulas when
they involve the first three moments (with a special prize for
the insufficiently known formula cov(X̄, S2) = µ3/n). . . .” No
proof of the formula was given by Dodge and Rousson (1999);
the following is our derivation of (1).

Derivation of (1): Let µ and σ 2 denote the population mean
and variance, respectively.

cov(X̄, S2) = E(X̄S2) − E(X̄)E(S2)

= E
(
(X̄ − µ + µ)S2

)
− µσ 2

= E
(
(X̄ − µ)S2

)
.

Let Yi = Xi − µ, for i = 1, 2, . . . , n; and denote the sample
mean and variance of the Yi by Ȳ and S2

Y , respectively. Then

cov(X̄, S2) = E(ȲS2
Y )
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Substituting I1 and I2 into Equation (2) completes the proof.
A direct application of formula (1) is that, if the population

distribution is symmetric about its mean (also suppose that its
third moment exists), then the covariance of the sample mean
and variance is 0. According to this result and the theorem in
Section 1, we can construct numerous examples of “zero covari-
ance without independence.”

3. AN EXAMPLE

With a wish to help teachers explain to students, we apply (1)
to a simple case, where the population distribution is Bernoulli
and sample size n = 2.

Let X1 and X2 be a sample of two independent observations
drawn from a population having a Bernoulli distribution with pa-
rameter p (0 < p < 1). The sample mean and sample variance
now can be written down as

Table 1. The joint probability distribution of X̄ and S2.

(X̄, S2) (0, 0) (1/2, 1/2) (1, 0)

Probability (1 − p)2 2p(1 − p) p2

X̄ = X1 + X2

2
, and S2 = (X1 − X2)

2

2
.

By the two equations and because of the population having a
Bernoulli distribution, we can easily obtain the joint probability
distribution of X̄ and S2, which is summarized in Table 1.

The third central moment of X1 is equal to p(1 − p)(1 − 2p)

(see Johnson, Kotz, and Kemp 1992, p. 107, or derive it directly.)
According to (1), we have

cov(X̄, S2) = p(1 − p)(1 − 2p)

2
. (3)

We see from (3) that:

• cov(X̄, S2) > 0, if p < 1
2 ;

• cov(X̄, S2) = 0, if p = 1
2 ;

• cov(X̄, S2) < 0, if p > 1
2 .

A by-product of the above discussion (no need of the aid of
the theorem in Section 1) is an example of “zero covariance
without independence.” To produce such an example we simply
let p = 1/2, in which case cov(X̄, S2) = 0. However, X̄ and
S2 are not independent because

Pr(S2 = 0|X̄ = 1) = 1 �= 1

2
= Pr(S2 = 0). (by using Table 1).
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