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he parametric (or model-based) methods of
signal processing often require not only the
estimation of a vector of real-valued param-
eters but also the selection of one or several

integer-valued parameters that are equally important
for the specification of a data model. Examples of these
integer-valued parameters of the model include the
orders of an autoregressive moving average model, the
number of sinusoidal components in a sinusoids-in-
noise signal, and the number of
source signals impinging on a
sensor array. In each of these
cases, the integer-valued parame-
ters determine the dimension of
the parameter vector of the data model, and they must
be estimated from the data.

In what follows we will use the following symbols:

y = the vector of available data (of size N )
θ = the (real-valued) parameter vector 
n = the dimension of θ .

For short, we will refer to n as the model order,

even though sometimes n is not really an order (see,
e.g., the above examples). We assume that both y and
θ are real valued

y ∈ RN

θ ∈ Rn.

Whenever we need to emphasize that the number of
elements in θ is n, we will use the notation θn . A
method that estimates n from the data vector y will be

called an order-selection rule.
Note that the need for estimating
a model order is typical of the
parametric approaches to signal
processing. The nonparametric

methods do not have such a requirement.
The literature on order selection is as considerable as

that on (real-valued) parameter estimation (see, e.g.,
[1]–[7] and the references therein). However, many
order-selection rules are tied to specific parameter esti-
mation methods, and, hence, their applicability is rather
limited. Here we will concentrate on order-selection
rules that are associated with the maximum likelihood
method (MLM) of parameter estimation. The MLM is
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likely the most commonly used parameter estimation
method. Consequently, the order-estimation rules that
can be used with the MLM are of quite general interest.

Maximum Likelihood
Parameter Estimation
In this section, we review briefly the MLM of parame-
ter estimation and some of its main properties that are
of interest in this article. Let 

p(y , θ) = the probability density function (PDF)
of the data vector y , which depends on the
parameter vector θ , also called the likelihood
function.

The maximum likelihood (ML) estimate of θ , which
we denote by θ̂ , is given by the maximizer of p(y , θ);
see, e.g., [2], [8]–[15]. Alternatively, as ln (·) is a
monotonically increasing function

θ̂ = arg max
θ

ln p(y , θ). (1)

Under the Gaussian data assumption, the MLM typical-
ly reduces to the nonlinear least-squares (NLS) method
of parameter estimation. To illustrate this fact, let us
assume that the observation vector y can be written as

y = µ(γ ) + e (2)

where e is a (real-valued) Gaussian white-noise vector
with mean zero and covariance matrix given by
E {ee T } = σ 2I , γ is an unknown parameter vector, and
µ(γ ) is a deterministic function of γ . It follows readily
from (2) that

p(y , θ) = 1
(2π)N /2(σ 2)N /2 e− ||y−µ(γ )||2

2σ2 (3)

where

θ =
[ γ

σ 2

]
. (4)

We deduce from (3) that

−2 ln p(y , θ) = N ln 2π +N ln σ 2 + ||y − µ(γ )||2
σ 2 . (5)

A simple calculation based on (5) shows that the ML
estimates of γ and σ 2 are given by

γ̂ = arg min
γ

||y − µ(γ )||2 (6)

σ̂ 2 = 1
N

||y − µ(γ̂ )||2. (7)

The corresponding value of the likelihood function is
given by

−2 ln p
(
y , θ̂

) = constant +N ln σ̂ 2. (8)

As can be seen from (6), in the present case the MLM
indeed reduces to the NLS.

A special case of (2), which we will address in this
article, is the sinusoidal signal model

yc (t ) =
nc∑

k=1

αke i(ωk t+ϕk) + e (t ), t = 1, . . . ,Ns (9)

where {[αk ωk ϕk]} denote the amplitude, frequency,
and phase of the kth sinusoidal component; Ns is
the number of observed complex-valued samples;
nc is the number of sinusoidal components present
in the signal; and e (t ) is the observation noise. In
this case

N = 2Ns (10)

n = 3nc + 1. (11)

We will use the sinusoidal signal model in (9) as a vehi-
cle for illustrating how the various general order-selec-
tion rules presented in what follows should be used in a
specific situation.

Next, we note that under regularity conditions, the
PDF of the ML estimate θ̂ converges, as N → ∞, to a
Gaussian PDF with mean θ and covariance equal to the
Cramér-Rao bound (CRB) matrix (see, e.g., [2], [16]
for a discussion about the CRB). Consequently, asymp-
totically in N , the PDF of θ̂ is given by

p
(
θ̂
) = 1

(2π)n/2| J −1|1/2 e− 1
2

(
θ̂−θ

)T
J
(
θ̂−θ

)
(12)

where

J = −E
{

∂2 ln p(y , θ)

∂θ ∂θT

}
(13)

is the so-called (Fisher) information matrix.
Note: To simplify the notation, we use the symbol θ

for both the true parameter vector and the parameter
vector viewed as an unknown variable. The exact mean-
ing of θ should be clear from the context.

The “regularity conditions” referred to above
require that n is not a function of N and, hence, that
the ratio between the number of unknown parameters
and the number of observations tends to zero as
N → ∞. This is true for most parametric signal pro-
cessing problems but not for all (see, e.g., [17]–[19]).

To close this section, we note that under mild con-
ditions

[
− 1

N
∂2 ln p(y , θ)

∂θ ∂θT − 1
N

J
]

→ 0 as N → ∞. (14)

To motivate (14) for the fairly general data model in
(2), we can argue as follows. Let us rewrite the nega-
tive log-likelihood function associated with (2) as
[see (5)]
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− ln p(y , θ) = constant + N
2

ln σ 2

+ 1
2σ 2

N∑
t=1

[
yt − µt (γ )

]2
(15)

where the subindex t denotes the t th component.
From (15) we obtain by a simple calculation:

−∂ ln p(y , θ)

∂θ
=




− 1
σ 2

N∑
t=1

[yt − µt (γ )]µ′
t (γ )

N
2σ 2 − 1

2σ 4

N∑
t=1

[yt − µt (γ )]2


 (16)

where

µ′
t (γ ) = ∂µt (γ )

∂γ
. (17)

Differentiating (16) once again gives (18) (shown at
the bottom of the page) where et = yt − µt (γ ) and

µ′′
t (γ ) = ∂2µt (γ )

∂γ ∂γ T . (19)

Taking the expectation of (18) and dividing by N , we
get

1
N

J =

 1

σ 2

(
1

N

N∑
t=1

µ′
t (γ )µ′T

t (γ )

)
0

0 1
2σ 4


 . (20)

We assume that µ(γ ) is such that the above matrix has
a finite limit as N → ∞. Under this assumption, and
the previously made assumption on e , we can also show
from (18) that

− 1
N

∂2 ln p(y , θ)

∂θ ∂θT

converges (as N → ∞) to the right side of (20), which
concludes the motivation of (14). Letting

Ĵ = − ∂2 ln p(y , θ)

∂θ ∂θT

∣∣∣∣
θ=θ̂

(21)

we deduce from (14), (20), and the consistency of θ̂
that, for sufficiently large values of N ,

1
N

Ĵ ≈ 1
N

J = O(1). (22)

Hereafter, ≈ denotes an asymptotic (approximate)
equality in which the higher-order terms have been
neglected and O(1) denotes a term that tends to a con-
stant as N → ∞.

Interestingly enough, the assumption that the right
side of (20) has a finite limit, as N → ∞, holds for
many problems but not for the sinusoidal parameter esti-
mation problem associated with (9). In the latter case,
(22) needs to be modified as (see, e.g., [20] and [21])

KN Ĵ KN ≈ KN J KN = O(1) (23)

where

KN =
[ 1

N 3/2
s

Inc 0

0 1
N 1/2

s
I2nc +1

]
(24)

and where Ik denotes the k × k identity matrix. To
write (24), we assumed that the upper-left nc × nc
block of J corresponds to the sinusoidal frequencies,
but this fact is not really important for the analysis in
this article, as we will see later on.

Useful Mathematical
Preliminaries and Outlook
In this section, we discuss a number of mathematical
tools that will be used in the following sections to
derive several important order-selection rules. We will
keep the discussion at an informal level to make the
material as accessible as possible. We first formulate the
model order selection as a hypothesis testing problem,
with the main goal of showing that the maximum a
posteriori (MAP) approach leads to the optimal order-
selection rule (in a certain sense). Then we discuss the
Kullback-Leibler (KL) information criterion, which lies
at the basis of another approach that can be used to
derive model order-selection rules.

MAP Selection Rule
Let Hn denote the hypothesis that the model order is
n, and let �n denote a known upper bound on n

n ∈ [1, n]. (25)

We assume that the hypotheses {Hn}�nn=1 are mutually
exclusive (i.e., only one of them can hold true at a
time). As an example, for a real-valued autoregres-
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−∂2 ln p(y , θ)

∂θ ∂θT =




− 1
σ 2

N∑
t=1

et µ
′′
t (γ ) + 1

σ 2

N∑
t=1

µ′
t (γ )µ′T

t (γ ) 1
σ 4

N∑
t=1

et µ
′
t (γ )

1
σ 4

N∑
t=1

et µ
′
t (γ ) − N

2σ 4 + 1
σ 6

N∑
t=1

e 2
t


 (18)



sive (AR) signal with coefficients {ak} we can define
Hn as

Hn : an �= 0 and an+1 = · · · = an = 0. (26)

For a sinusoidal signal we can proceed similarly, after
observing that for such a signal the number of compo-
nents nc is related to n as in (11)

n = 3nc + 1. (27)

Hence, for a sinusoidal signal with amplitudes {αk} we
can consider the following hypotheses:

Hnc : αk �= 0 for k = 1, . . . , nc and
αk = 0 for k = nc + 1, . . . , n̄c (28)

for nc ∈ [1,�nc ] [with the corresponding “model
order,’’ n, being given by (27)].

Note: The hypotheses {Hn} can be either nested or
nonnested. We say that H1 and H2 are nested whenev-
er the model corresponding to H1 can be obtained as a
special case of that associated with H2. To give an
example, the following hypotheses

H 1 : the signal is a first-order AR process
H 2 : the signal is a second-order AR process

are nested, whereas the above H1 and

H 3 : the signal consists of one sinusoid in noise

are nonnested.
Let

pn(y |Hn)= the PDF of y under H n. (29)

Whenever we want to emphasize the possible depend-
ence of the PDF in (29) on the parameter vector of the
model corresponding to Hn , we write

pn(y , θn)
�= pn(y |Hn). (30)

Assuming that (29) is available, along with the a priori
probability of Hn , pn(Hn), we can write the conditional
probability of Hn , given y , as

pn(Hn|y ) = pn(y |Hn)pn(Hn)

p(y )
. (31)

The MAP probability rule selects the order n (or the
hypothesis Hn) that maximizes (31). As the denomina-
tor in (31) does not depend on n, the MAP rule is
given by

max
n∈[1,n]

pn(y |Hn)pn(Hn). (32)

Most typically, the hypotheses {Hn} are a priori
equiprobable, i.e.,

pn(Hn) = 1
n

, n = 1, . . . , n (33)

in which case the MAP rule reduces to [see (32)]

max
n∈[1,n]

pn(y |Hn). (34)

Next, we define the average (or total) probability of
correct detection as

Pc d = Pr {[(decide H1) ∩ (H1 = true)] ∪ · · · ∪
× [(decide Hn) ∩ (Hn = true)]} . (35)

The attribute “average” that has been attached to Pc d
is motivated by the fact that (35) gives the probability
of correct detection “averaged” over all possible
hypotheses (as opposed, for example, to only consider-
ing the probability of correctly detecting that the
model order was two (let us say), which is
Pr{decide H2|H2}).

Note: Regarding the terminology, note that the
determination of a real-valued parameter from the
available data is called estimation, whereas it is usually
called detection for an integer-valued parameter, such
as a model order.

In the following, we prove that the MAP rule is
optimal in the sense of maximizing Pc d . To do so, con-
sider a generic rule for selecting n or, equivalently, for
testing the hypotheses {Hn} against each other. Such a
rule will implicitly or explicitly partition the observa-
tion space, RN , into �n sets {Sn}�nn=1, which are such that

We decide Hn if and only if y ∈ Sn. (36)

Making use of (36) along with the fact that the
hypotheses {Hn} are mutually exclusive, we can write
Pc d in (35) as

Pc d =
n∑

n=1

Pr {(decide Hn) ∩ (Hn = true)}

=
n∑

n=1

Pr {(decide Hn) |Hn} Pr{Hn}

=
n∑

n=1

∫
Sn

pn(y |Hn)pn(Hn)dy

=
∫
RN

[
n∑

n=1

In(y )pn(y |Hn)pn(Hn)

]
dy (37)

where In(y ) is the so-called indicator function given by

In(y ) =
{

1, if y ∈ Sn
0, otherwise. (38)

Next, observe that for any given data vector y one and
only one indicator function can be equal to one (as the
sets Sn do not overlap and their union is RN ). This
observation, along with (37) for Pc d , implies that the
MAP rule in (32) maximizes Pc d , as stated. Note that
the sets {Sn} corresponding to the MAP rule are implicitly
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defined via (32); however, {Sn} were of no real interest
in the proof, as both they and the indicator functions
were introduced only to simplify the above proof. For
more details on the topic of this subsection, see [14]
and [22].

KL Information
Let p0(y ) denote the true PDF of the observed data
vector y , and let p̂(y ) denote the PDF of a generic
model of the data. The “discrepancy” between p0(y )

and p̂(y ) can be expressed using the KL information or
discrepancy function (see [23])

D
(
p0, p̂

) =
∫

p0(y ) ln
[

p0(y )

p̂(y )

]
dy . (39)

(To simplify the notation, we omit the region of inte-
gration when it is the entire space.) Letting E0{·}
denote the expectation with respect to the true PDF,
p0(y ), we can rewrite (39) as

D
(
p0, p̂

) = E0

{
ln

[
p0(y )

p̂(y )

]}

= E0
{
ln p0(y )

}−E0
{
ln p̂(y )

}
. (40)

Next, we prove that (39) possesses the properties of a
suitable discrepancy function

D
(
p0, p̂

) ≥ 0
D

(
p0, p̂

) = 0 if and only if p0(y ) = p̂(y ). (41)

To verify (41), we use the fact that

−ln λ ≥ 1 − λ for any λ > 0 (42)

and

−ln λ = 1 − λ if and only if λ = 1. (43)

Hence, letting λ(y ) = p̂(y )/p0(y ),

D
(
p0, p̂

) =
∫

p0(y ) [− ln λ(y )] dy

≥
∫

p0(y ) [1 − λ(y )] dy

=
∫

p0(y )

[
1 − p̂(y )

p0(y )

]
dy

= 0

where the equality holds if and only if λ(y ) ≡ 1, i.e.,
p̂(y ) ≡ p0(y ).

The KL discrepancy function can be viewed as show-
ing the “loss of information” induced by the use of
p̂(y ) in lieu of p0(y ). For this reason, D(p0, p̂) is some-
times called an information function, and the order-
selection rules derived from it are called information
criteria (see the following three sections).

Outlook: Theoretical and Practical Perspectives
Neither the MAP rule nor the KL information can be
directly used for order selection because the PDFs of
the data vector under the various hypotheses or the
true data PDF are usually unknown. A possible way of
using the MAP approach for order detection consists of
assuming an a priori PDF for the unknown parameter
vector θn and integrating θn out of pn(y , θn) to obtain
pn(y |Hn). This Bayesian-type approach will be dis-
cussed later in the article. Regarding the KL approach,
a natural way of using it for order selection consists
of using an estimate D̂(p0, p̂) in lieu of the unavailable
D(p0, p̂) [for a suitably chosen model PDF, p̂(y )] and
determining the model order by minimizing D̂(p0, p̂).
This KL-based approach will be discussed in the fol-
lowing sections.

The derivations of all model order-selection rules in
the sections that follow rely on the assumption that one
of the hypotheses {Hn} is true. As this assumption is
unlikely to hold in applications with real-life data, the
reader may justifiably wonder whether an order-selec-
tion rule derived under such an assumption has any
practical value. To address this concern, let us remark
on the fact that good parameter estimation methods
(such as the MLM), derived under rather strict model-
ing assumptions, perform quite well in applications
where the assumptions made are rarely satisfied exactly.
Similarly, order-selection rules based on sound theoret-
ical principles (such as ML, KL, and MAP) are likely to
perform well in applications despite the fact that some
of the assumptions made when deriving them do not
hold exactly. While the precise behavior of order-selec-
tion rules (such as those presented in the sections to
follow) in various mismodeling scenarios is not well
understood, extensive simulation results (see, e.g.,
[3]–[5]) lend support to the above claim.

Direct KL Approach: No-Name Rule
The model-dependent part of the KL discrepancy (40)
is given by

−E0
{
ln p̂(y )

}
(44)

where p̂(y ) is the PDF or likelihood of the model. (To
simplify the notation, we omit the index n of p̂(y ); we
will reinstate this index later on, when needed.)
Minimization of (44) with respect to the model order
is equivalent to maximization of the function

I (p0, p̂) = E0
{
ln p̂(y )

}
, (45)

which is sometimes called the relative KL information.
The ideal choice for p̂(y ) in (45) would be the model
likelihood, pn(y |Hn) = pn(y , θn). However, the model
likelihood function is not available, and, hence, this
choice is not possible. Instead, we might think of using
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p̂(y ) = p
(
y , θ̂

)
(46)

in (45), which would give
I

(
p0, p

(
y , θ̂

)) = E0

{
ln p

(
y , θ̂

)}
. (47)

Because the true PDF of the data vector is unknown,
we cannot evaluate the expectation in (47). Apparently,
what we could easily do is to use the following unbi-
ased estimate of I (p0, p(y , θ̂ )), instead of (47) itself,

Î = ln p
(

y , θ̂
)

. (48)

The order-selection rule that maximizes (48) does not
have satisfactory properties, however. This is especially
true for nested models, in the case of which the order-
selection rule based on the maximization of (48) fails
completely. Indeed, for nested models this rule will
always choose the maximum possible order �n owing to
the fact that ln pn(y , θ̂n) monotonically increases with
increasing n.

A better idea consists of approximating the unavail-
able log-PDF of the model ln pn(y , θn) by a second-
order Taylor series expansion around θ̂n and using the
so-obtained approximation to define ln p̂(y ) in (45)

ln pn(y , θn) ≈ ln pn(y , θ̂n)

+ (
θn − θ̂n)T

[
∂ ln pn(y , θn)

∂θn

∣∣∣∣
θn=θ̂n

]

+ 1
2

(
θn − θ̂n)T

[
∂2 ln pn(y , θn)

∂θn ∂θnT

∣∣∣∣
θn=θ̂n

]

× (
θn − θ̂n) �= ln p̂n(y ). (49)

Because θ̂n is the maximizer of ln pn(y , θn), the second
term in (49) is equal to zero. Hence, we can write [see
also (22)]

ln p̂n(y ) ≈ ln pn
(
y , θ̂n)− 1

2
(
θn − θ̂n)T J

(
θn − θ̂n)

. (50)

According to (12),

E0

{(
θn − θ̂n)T J

(
θn − θ̂n)}

= tr
[

J E0

{(
θn − θ̂n)(

θn − θ̂n)T
} ]

= tr[In] = n, (51)

which means that, for the choice of p̂n(y ) in (50), we
have

I = E0

{
ln pn

(
y , θ̂n) − n

2

}
. (52)

An unbiased estimate of the above relative KL informa-
tion is obviously given by

ln pn
(
y , θ̂n) − n

2
. (53)

The corresponding order-selection rule maximizes (53)
or, equivalently, minimizes

NN(n) = −2 ln pn
(
y , θ̂n) + n (54)

with respect to the model order n. This no-name (NN)
rule can be shown to perform better than that based on
(48) but worse than the rules presented in the following
sections. Essentially, the problem with (54) is that it
tends to overfit (i.e., to select model orders larger than
the “true” order). To understand intuitively how this
happens, note that the first term in (54) decreases with
increasing n (for nested models), whereas the second
term increases. Hence, the second term in (54) penalizes
overfitting; however, it turns out that it does not penal-
ize quite enough. The rules presented in the following
sections have a form similar to (54) but with a larger
penalty term, and they do have better properties than
(54). Despite this fact, we have chosen to present (54)
briefly in this section for two reasons: 1) the discussion
here has revealed the failure of using maxn ln pn(y , θ̂n)

as an order-selection rule and has shown that it is in
effect quite easy to obtain rules with better properties,
and 2) this section has laid the groundwork for the deri-
vation of better order-selection rules based on the KL
approach in the next two sections.

To close the present section, we motivate the multi-
plication with −2 in going from (53) to (54). The rea-
son we prefer (54) to (53) is simply due to the fact that
for the fairly common NLS model in (2) and the asso-
ciated Gaussian likelihood in (3), −2 ln pn(y , θ̂n) takes
on the following convenient form:

−2 ln pn
(
y , θ̂n) = N ln σ̂ 2

n + constant (55)

[see (5)–(7)]. Hence, in such a case we can replace
−2 ln pn(y , θ̂n) in (54) by the scaled logarithm of the
residual variance N ln σ̂ 2

n . This remark also applies to
the order-selection rules presented in the following sec-
tions, which are written in a form similar to (54).

Cross-Validatory KL Approach:
The Akaike Information Criterion Rule
As explained in the previous section, a possible approach
to model order selection consists of minimizing the KL
discrepancy between the “true” PDF of the data and the
PDF (or likelihood) of the model, or equivalently maxi-
mizing the relative KL information [see (45)]

I
(
p0, p̂

) = E0
{
ln p̂(y )

}
. (56)

When using this approach, the first (and likely the
main) hurdle that we have to overcome is the choice of
the model likelihood p̂(y ). As already explained, ideally
we would like to use the true PDF of the model as p̂(y )

in (56), i.e., p̂(y ) = pn(y , θn), but this is not possible
since pn(y , θn) is unknown. Hence, we have to choose
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p̂(y ) in a different way. This choice is important, as it
eventually determines the model order-selection rule
that we will obtain.

The other issue we should consider when using the
approach based on (56) is that the expectation in (56)
cannot be evaluated because the true PDF of the data
is unknown. Consequently, we will have to use an esti-
mate Î in lieu of the unavailable I (p0, p̂) in (56).

Let x denote a fictitious data vector with the same
size N and the same PDF as y but which is independent
of y . Also, let θ̂x denote the ML estimate of the model
parameter vector that would be obtained from x if x
were available. (We omit the superindex n of θ̂x as often
as possible, to simplify notation.) In this section, we will
consider the following choice of the model’s PDF:

ln p̂(y ) = Ex
{
ln p

(
y , θ̂x

)}
(57)

which, when inserted in (56), yields

I = E y

{
Ex

{
ln p

(
y , θ̂x

)}}
. (58)

Hereafter, Ex {·} and E y {·} denote the expectation with
respect to the PDF of x and y , respectively. The above
choice of p̂(y ), which was introduced in [24] and [25],
has an interesting cross-validation interpretation: we use
the sample x for estimation and the independent sample
y for validation of the so-obtained model’s PDF. Note
that the dependence of (58) on the fictitious sample x is
eliminated (as it should be, since x is unavailable) via
the expectation operation Ex {·}; see below for details.

An asymptotic second-order Taylor series expansion
of ln p(y , θ̂x ) around θ̂y , similar to (49) and (50), yields

ln p(y , θ̂x ) ≈ ln p(y , θ̂y )

+ (
θ̂x − θ̂y

)T

[
∂ ln p(y , θ)

∂θ

∣∣∣∣
θ=θ̂y

]

+ 1
2

(
θ̂x − θ̂y

)T

[
∂2 ln p(y , θ)

∂θ ∂θT

∣∣∣∣
θ=θ̂y

]

× (
θ̂x − θ̂y

) ≈ ln p
(
y , θ̂y

)
− 1

2
(
θ̂x − θ̂y

)T Jy
(
θ̂x − θ̂y

)
(59)

where Jy is the J matrix, as defined in (21), associated
with the data vector y . Using the fact that x and y have
the same PDF (which, in particular, implies that
Jy = Jx ), along with the fact that they are independent
of each other, we can show that

E y

{
Ex

{(
θ̂x − θ̂y

)T Jy
(
θ̂x − θ̂y

)}}

= E y

{
Ex

{
tr

(
Jy

[(
θ̂x − θ

) − (
θ̂y − θ

)]

× [(
θ̂x − θ

) − (
θ̂y − θ

)]T
)}}

= tr
[

Jy

(
J −1

x + J −1
y

)]
= 2n. (60)

Inserting (60) in (59) yields the following asymptotic
approximation of the relative KL information in (58):

I ≈ E y

{
ln pn

(
y , θ̂n) − n

}
(61)

(where we have omitted the subindex y of θ̂ but rein-
stated the superindex n). Evidently, (61) can be esti-
mated in an unbiased manner by

ln pn
(
y , θ̂n) − n. (62)

Maximizing (62) with respect to n is equivalent to
minimizing the following function of n

AIC = −2 ln pn
(
y , θ̂n) + 2n (63)

where AIC stands for Akaike information criterion (the
reasons for multiplying (62) by −2 to get (63) and for the
use of the word “information” in the name given to (63)
have been explained before; see the previous two sections).

As an example, for the sinusoidal signal model with
nc components [see (9)], AIC takes on the following
form [see (6)–(11)]:

AIC = 2Ns ln σ̂ 2
nc

+ 2(3nc + 1) (64)

where Ns denotes the number of available complex-val-
ued samples {yc (t )}Ns

t=1 and

σ̂ 2
nc

= 1
Ns

Ns∑
t=1

∣∣∣∣∣yc (t ) −
nc∑

k=1

α̂ke i(ω̂k t+ϕ̂k)

∣∣∣∣∣
2

. (65)

Note: AIC can also be obtained by using the follow-
ing relative KL information function, in lieu of (58),

I = E y

{
Ex

{
ln p

(
x , θ̂y

)}}
. (66)

Note that, in (66), x is used for validation and y for
estimation. However, the derivation of AIC from (66)
is more complicated; such a derivation, which is left as
an exercise to the reader, will make use of two Taylor
series expansions and the fact that Ex {ln p(x , θ)} =
E y {ln p(y , θ)}.

The performance of AIC has been found to be satis-
factory in many case studies and applications to real-life
data reported in the literature (see, e.g., [3]–[6]). The
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performance of a model order-selection rule, such as
AIC, can be measured in different ways.

As a first possibility, we can consider a scenario in
which the data-generating mechanism belongs to the
class of models under test and thus there is a true
order. In such a case, studies can be used to determine
the probability with which the rule selects the true
order. For AIC, it can be shown that, under quite gen-
eral conditions

the probability of underfitting → 0 (67)

the probability of overfitting → constant > 0 (68)

as N → ∞ (see, e.g., [3], [26]). We can see from (68)
that the behavior of AIC with respect to the probability
of correct detection is not entirely satisfactory.
Interestingly, it is precisely this kind of behavior that
appears to make AIC perform satisfactorily with respect
to the other possible type of performance measure, as
explained below.

An alternative way of measuring the performance is
to consider a more practical scenario in which the data-
generating mechanism is more complex than any of the
models under test, which is usually the case in practical
applications. In such a case we can use studies to deter-
mine the performance of the model picked by the rule
as an approximation of the data-generating mechanism.
For instance, we can consider the average distance
between the estimated and true spectral densities or the
average prediction error of the model. With respect to
such a performance measure, AIC performs well, partly
because of its tendency to select models with relatively
large orders, which may be a good thing to do in a case
in which the data-generating mechanism is more com-
plex than the models used to fit it.

The nonzero overfitting probability of AIC [see
(68)] is due to the fact that the term 2n in (63) (that
penalizes high-order models), while larger than the
term n that appears in the NN rule, is still too small. In
effect, extensive simulation studies (see, e.g., [27])
have empirically found that the following generalized
information criterion (GIC):

GIC = −2 ln pn
(
y , θ̂n) + vn (69)

may outperform AIC with respect to various perform-
ance measures if ν > 2. Specifically, depending on the
considered scenario as well as the value of N and the per-
formance measure, values of ν in the interval ν ∈ [2, 6]
have been found to give the best performance.

In the next section, we show that GIC can be
obtained as a natural theoretical extension of AIC.
Hence, the use of (69) with ν > 2 can be motivated on
formal grounds. However, the choice of ν in GIC is a
more difficult problem that cannot be solved in the
current KL framework (see the next section for details).
The different Bayesian approach, presented later in this

article, appears to be necessary to arrive at a rule having
the form of (69) but with a specific expression for ν.

We close this section with a brief discussion on
another modification of the AIC rule suggested in the
literature (see, e.g., [28]). As explained before, AIC is
derived by maximizing an asymptotically unbiased esti-
mate of the relative KL information I in (58).
Interestingly, for linear regression models (given by (2)
where µ(γ ) is a linear function of γ ), the following
corrected AIC rule, AIC c, can be shown to be an
exactly unbiased estimate of I

AICc = −2 ln pn
(
y , θ̂n) + 2N

N − n − 1
n (70)

(see, e.g., [28] and [29]). As N → ∞, AICc → AIC (as
expected). For finite values of N , however, the penalty
term of AICc is larger than that of AIC. Consequently, in
finite samples AICc has a smaller risk of overfitting than
AIC, and therefore we can say that AICc trades off a
decrease of the risk of overfitting (which is rather large for
AIC) for an increase in the risk of underfitting (which is
quite small for AIC, and hence it can be slightly increased
without a significant deterioration of performance). With
this fact in mind, AICc can be used as an order-selection
rule for more general models than just linear regressions,
even though its motivation in the general case is pragmat-
ic rather than theoretical. For other finite-sample correc-
tions of AIC we refer the reader to [30]–[32].

Generalized Cross-Validatory KL
Approach: The GIC Rule
In the cross-validatory approach of the previous sec-
tion, the estimation sample x had the same length as
the validation sample y . In that approach, θ̂x (obtained
from x ) was used to approximate the likelihood of the
model via Ex {p(y , θ̂x )}. The AIC rule so obtained has a
nonzero probability of overfitting (even asymptotical-
ly). Intuitively, the risk of overfitting will decrease if we
let the length of the validation sample be (much) larger
than that of the estimation sample, i.e.,

N �= length(y ) = ρ · length(x ), ρ ≥ 1. (71)

Indeed, overfitting occurs when the model correspon-
ding to θ̂x also fits the “noise” in the sample x so that
p(x , θ̂x ) has a “much” larger value than the true PDF,
p(x , θ). Such a model may behave reasonably well on a
short validation sample y but not on a long validation
sample (in the latter case, p(y , θ̂x ) will take on very small
values). The simple idea in (71) of letting the lengths of
the validation and estimation samples be different leads
to a natural extension of AIC, as shown below.

A straightforward calculation shows that under (71)
we have

Jy = ρJx (72)
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[see, e.g., (20)]. With this small difference, the calcula-
tions in the previous section carry over to the present
case, and we obtain [see (59)–(60)]

I ≈ E y
{

ln p
(
y , θ̂y

)}
− 1

2
E y

{
Ex

{
tr

(
Jy

[(
θ̂x −θ

)−(
θ̂y −θ

)]

×[(
θ̂x −θ

)−(
θ̂y −θ

)]T
)}}

= E y

{
ln p

(
y , θ̂y

) − 1
2

tr
[

Jy
(
ρ J −1

y + J −1
y

)]}

= E y

{
ln p

(
y , θ̂y

) − 1 + ρ

2
n
}

. (73)

An unbiased estimate of the right side in (73) is given
by

ln p
(
y , θ̂y

) − 1 + ρ

2
n. (74)

The generalized information criterion (GIC) rule maxi-
mizes (74) or, equivalently, minimizes

GIC = −2 ln pn
(
y , θ̂n) + (1 + ρ)n. (75)

As expected, (75) reduces to AIC for ρ = 1. Also note
that, for a given y , the order selected by (75) with
ρ > 1 is always smaller than the order selected by AIC
[because the penalty term in (75) is larger than that in
(63)]; hence, as predicted by the previous intuitive dis-
cussion, the risk of overfitting associated with GIC is
smaller than for AIC (for ρ > 1).

On the negative side, there is no clear guideline for
choosing ρ in (75). As already mentioned in the previ-
ous section, the “optimal” value of ρ in the GIC rule
was empirically shown to depend on the performance
measure, the number of data samples, and the data-
generating mechanism itself [3], [27]. Consequently, ρ
should be chosen as a function of all these factors but,
as already stated, there is no clear hint as to how that
could be done. The approach of the next section
appears to be more successful than the present
approach in suggesting a specific choice for ρ in (75).
Indeed, as we will see, that approach leads to an order-
selection rule of the GIC type but with a clear expres-
sion for ρ as a function of N .

Bayesian Approach: The Bayesian
Information Criterion Rule
The order-selection rule to be presented in this section
can be obtained in two ways. First, let us consider the KL
framework of the previous sections. Therefore, our goal
is to maximize the relative KL information [see (56)]

I
(
p0, p̂

) = E0
{
ln p̂(y )

}
. (76)

The ideal choice of p̂(y ) would be p̂(y ) = pn(y , θn).

This choice is not possible, however, since the likelihood
of the model pn(y , θn) is not available. Hence we have
to use a “surrogate likelihood” in lieu of pn(y , θn). Let
us assume, as before, that a fictitious sample x was used
to make inferences about θ . The PDF of the estimate θ̂x
obtained from x can alternatively be viewed as an a pri-
ori PDF of θ and, hence, it will be denoted by p(θ) in
what follows. (Once again, we omit the superindex n of
θ , θ̂ , etc., to simplify the notation, whenever there is no
risk for confusion.) Note that we do not constrain p(θ)

to be Gaussian. We only assume that

p(θ) is flat around θ̂ (77)

where, as before, θ̂ denotes the ML estimate of the
parameter vector obtained from the available data sam-
ple, y . Furthermore, now we assume that the length of
the fictitious sample is a constant that does not depend
on N , which implies that

p(θ) is independent of N . (78)

As a consequence of assumption (78), the ratio
between the lengths of the validation sample and the
(fictitious) estimation sample grows without bound as
N increases. According to the discussion in the previ-
ous section, this fact should lead to an order-selection
rule with an asymptotically much larger penalty term
than that of AIC or GIC (with ρ = constant) and,
hence, with a reduced risk of overfitting.

The scenario introduced above leads naturally to the
following choice of surrogate likelihood

p̂(y ) = Eθ

{
p(y , θ)

} =
∫

p(y , θ)p(θ)dθ. (79)

Note: In the previous sections we used a surrogate
likelihood given by [see (57)]

ln p̂(y ) = Ex
{
ln p

(
y , θ̂x

)}
. (80)

However, we could have used instead a p̂(y ) given by

p̂(y ) = E θ̂x

{
p
(
y , θ̂x

)}
. (81)

The rule that would be obtained by using (81) can be
shown to have the same form as AIC/GIC but with a
(slightly) different penalty term. Note that the choice
of p̂(y ) in (81) is similar to the choice in (79) consid-
ered in this section, with the difference that for (81)
the “a priori” PDF, p(θ̂x ), depends on N .

To obtain a simple asymptotic approximation of the
integral in (79) we make use of the asymptotic approxi-
mation of p(y , θ) given by (49)–(50)

p(y , θ) ≈ p
(
y , θ̂

)
e− 1

2

(
θ̂−θ

)T
Ĵ
(
θ̂−θ

)
, (82)

which holds for θ in the vicinity of θ̂ . Inserting (82) in
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(79) and using the assumption in (77) along with the
fact that p(y , θ) is asymptotically much larger at θ = θ̂

than at any θ �= θ̂ , we obtain

p̂(y ) ≈ p
(
y , θ̂

)
p
(
θ̂
) ∫

e− 1
2

(
θ̂−θ

)T
Ĵ
(
θ̂−θ

)
dθ

= p
(
y , θ̂

)
p
(
θ̂
)
(2π)n/2

| Ĵ |1/2

×
∫

1

(2π)n/2| Ĵ −1|1/2
e− 1

2

(
θ̂−θ

)T
Ĵ
(
θ̂−θ

)
dθ

︸ ︷︷ ︸
=1

= p
(
y , θ̂

)
p
(
θ̂
)
(2π)n/2

| Ĵ |1/2
(83)

(see [21] and the references therein for the exact con-
ditions under which the above approximation holds
true). It follows from (76) and (83) that

Î = ln p
(
y , θ̂

) + ln p
(
θ̂
) + n

2
ln 2π − 1

2
ln| Ĵ | (84)

is an asymptotically unbiased estimate of the relative
KL information. Note, however, that (84) depends
on the a priori PDF of θ , which has not been speci-
fied. To eliminate this dependence, we use the fact
that | Ĵ | increases without bound as N increases.
Specifically, in most cases (but not in all; see below)
we have that [cf. (22)]

ln| Ĵ | = ln
∣∣∣∣N · 1

N
Ĵ
∣∣∣∣

= n ln N + ln
∣∣∣∣ 1
N

Ĵ
∣∣∣∣

= n ln N + O(1) (85)

where we used the fact that |c J | = c n| J | for a scalar c
and an n × n matrix J . Using (85) and the fact that
p(θ) is independent of N [see (78)] yields the follow-
ing asymptotic approximation of the right side in (84)

Î ≈ ln pn
(
y , θ̂n) − n

2
ln N . (86)

The Bayesian information criterion (BIC) rule selects
the order that maximizes (86) or, equivalently, mini-
mizes 

BIC = −2 ln pn
(
y , θ̂n) + n ln N . (87)

We remind the reader that (87) has been derived under
the assumption that (22) holds, which is not always true.
As an example (see [21] for more examples), consider
once again the sinusoidal signal model with nc compo-
nents, in the case of which we have [cf. (23) and (24)]

ln | Ĵ | = ln
∣∣K −2

N

∣∣ + ln
∣∣∣KN Ĵ KN

∣∣∣
= (2nc + 1) lnNs + 3nc lnNs + O(1)

= (5nc + 1) lnNs + O(1). (88)

Hence, in the case of sinusoidal signals, BIC takes on
the form

BIC = −2 ln pnc

(
y , θ̂nc

) + (5nc + 1) lnNs

= 2Ns ln σ̂ 2
nc

+ (5nc + 1) lnNs (89)

where σ̂ 2
nc

is as defined in (65), and Ns denotes the
number of complex-valued data samples.

The attribute Bayesian in the name of the rule in
(87) or (89) is motivated by the use of the a priori
PDF p(θ), in the rule derivation, which is typical of
a Bayesian approach. In fact, the BIC rule can be
obtained using a ful l  Bayesian approach, as
explained next.

To obtain the BIC rule in a Bayesian framework, we
assume that the parameter vector θ is a random variable
with a given a priori PDF denoted by p(θ). Owing to
this assumption on θ , we need to modify the previously
used notation as follows: p(y , θ) will now denote the
joint PDF of y and θ , and p(y |θ) will denote the condi-
tional PDF of y given θ . Using this notation and the
Bayes’ rule, we can write

p(y |Hn) =
∫

pn
(
y , θn)

dθn

=
∫

pn
(
y |θn)

pn
(
θn)

dθn. (90)

The right side of (90) is identical to that of (79). It fol-
lows from this observation and the analysis conducted
in the first part of this section that, under the assump-
tions (77) and (78) and asymptotically in N ,

ln p(y |Hn) ≈ ln pn
(
y , θ̂n) − n

2
ln N = −1

2
BIC (91)

[see (87)]. Hence, maximizing p(y |Hn) is asymptoti-
cally equivalent with minimizing BIC, independently of
the prior p(θ) [as long as it satisfies (77) and (78)].
The rediscovery of BIC in the above Bayesian frame-
work is important, as it reveals the interesting fact that
the BIC rule is asymptotically equivalent to the optimal
MAP rule and, hence, that the BIC rule can be expect-
ed to maximize the total probability of correct detec-
tion, at least for sufficiently large values of N .

The BIC rule has been proposed in [33] and [34],
among others. In [35] and [36], the same rule has
been obtained by a rather different approach based on
coding arguments and the minimum description length
(MDL) principle. The fact that the BIC rule can be
derived in several different ways suggests that it may
have a fundamental character. In particular, it can be
shown that, under the assumption that the data-generating
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mechanism belongs to the model class considered, the
BIC rule is consistent; that is,

For BIC : the probability of correct detection
→ 1 as N → ∞ (92)

(see, e.g., [2], [3]). This should be contrasted with the
nonzero overfitting probability of AIC and GIC (with
ρ = constant), see (67) and (68). Note that the result
in (92) is not surprising in view of the asymptotic
equivalence between the BIC rule and the optimal
MAP rule.

Finally, we note in passing that if we remove the
condition in (78) that p(θ) is independent of N , then
the term ln p(θ̂) can no longer be eliminated from (84)
by letting N → ∞. Consequently, (84) would lead to a
prior-dependent rule that could be used to obtain any
other rule described in this article by suitably choosing
the prior. While this line of argument can serve the the-
oretical purpose of interpreting various rules in a
Bayesian framework, it appears to have little practical
value, as it can hardly be used to derive new sound
order-selection rules.

Summary
We begin with the observation that all the order-selec-
tion rules discussed have a common form, i.e.,

−2 ln pn
(
y , θ̂n) + η(n,N )n, (93)

but  with different penalty coefficients η(n,N )

AIC: η(n,N ) = 2

AICc : η(n,N ) = 2
N

N − n − 1
GIC: η(n,N ) = ν = ρ + 1
BIC: η(n,N ) = lnN . (94)

Before using any of these rules for order selection in a spe-
cific problem, we need to carry out the following steps:
▲Obtain an explicit expression for the term
−2 ln pn(y , θ̂n) in (93). This requires the specification
of the model structures to be tested as well as their pos-
tulated likelihoods. An aspect that should receive some
attention here is the fact that the derivation of all previ-
ous rules assumed real-valued data and parameters.
Consequently, complex-valued data and parameters
must be converted to real-valued quantities in order to
apply the results in this article.
▲ Count the number of unknown (real-valued) parame-
ters in each model structure under consideration. This is
easily done in most parametric signal processing problems.
▲Verify that the assumptions that have been made to
derive the rules hold true. Fortunately, the general
assumptions made are quite weak and, hence, they will
usually hold: indeed, the models under test may be

either nested or nonnested, and they may even be only
approximate descriptions of the data generating mecha-
nism. There are two particular assumptions, made on the
information matrix J , however, that do not always hold,
and hence they must be checked. First, we assumed in all
derivations that the inverse matrix J −1 exists, which is
not always the case. Second, we made the assumption
that J is such that J /N = O(1). For some models this
is not true, and a different normalization of J is
required to make it tend to a constant matrix as N → ∞
(this aspect is important for the BIC rule only).

We have used the sinusoidal signal model as an exam-
ple to illustrate the steps above and the involved aspects.

Once the above aspects have been carefully consid-
ered, we can go on to use one of the four rules in (93)
and (94) for selecting the order in our estimation prob-
lem. The question as to which rule should be used is not
an easy one. In general, we prefer AICc over AIC:
indeed, there is empirical evidence that AICc outper-
forms AIC in small samples (whereas in medium or large
samples the two rules are almost equivalent). We also
tend to prefer BIC over AIC or AICc on the grounds
that BIC is an asymptotic approximation of the optimal
MAP rule. Regarding GIC, as mentioned earlier, GIC
with ν ∈ [2, 6] (depending on the scenario under study)
can outperform AIC and AICc. Hence, for lack of a
more precise guideline, we can think of using GIC with
ν = 4, the value in the middle of the above interval. In
summary, a possible ranking of the four rules discussed
herein is as follows (the first being considered the best):
▲ BIC
▲ GIC with ν = 4 (ρ = 3)
▲ AICc
▲ AIC.
We should warn the reader, however, that the previ-
ous ranking is approximate, and it will not necessari-
ly hold in every application. In Figure 1, we show
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▲ 1. Penalty coefficients of AIC, GIC with v = 4, AICc (for n = 5),
and BIC as functions of the data length N.
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the penalty coefficients of the above rules, as func-
tions of N , to further illustrate the relationship
between them.

Finally, we note that in the interest of brevity we will
not include numerical examples with the order-selec-
tion rules under discussion but instead refer the reader
to the abundant literature on the subject; see, e.g., 
[1]–[6], [30]–[32]. In particular, a forthcoming article
[37] contains a host of numerical examples with the
information criteria discussed in this review, along with
general guidelines as to how a numerical study of an
order-selection rule should be organized and what per-
formance measures should be used.
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