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Abstract

We consider the problem of choosing a set of k sensor measurements, from a set of
m possible or potential sensor measurements, that minimizes the error in estimating
some parameters. Solving this problem by evaluating the performance for each of the
(m

k

)

possible choices of sensor measurements is not practical unless m and k are small.
In this paper we describe a heuristic, based on convex optimization, for approximately
solving this problem. Our heuristic gives a subset selection as well as a bound on the
best performance that can be achieved by any selection of k sensor measurements.
There is no guarantee that the gap between the performance of the chosen subset and
the performance bound is always small; but numerical experiments suggest that the gap
is small in many cases. Our heuristic method requires on the order of m3 operations;
for m = 1000 possible sensors, we can carry out sensor selection in a few seconds on a
2 GHz personal computer.

1 Introduction

We study the problem of selecting k sensors, from among m potential sensors. Each sensor
gives a linear function of a parameter vector x, plus an additive noise; we assume these
measurement noises are independent identically distributed zero mean Gaussian random
variables. The sensor selection, i.e., the choice of the subset of k sensors to use, affects the
estimation error covariance matrix. Our goal is to choose the sensor selection to minimize
the determinant of the estimation error covariance matrix, which is equivalent to minimizing
the volume of the associated confidence ellipsoid. One simple method for solving the sensor
selection problem is to evaluate the performance for all

(

m
k

)

choices for the sensor selection,
but evidently this is not practical unless m or k is very small. For example, with m = 100
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potential sensors, from which we are to choose k = 25, there are on the order of 1023 possible
choices, so direct enumeration is clearly not possible.

In this paper we describe a new method for approximately solving the sensor selection
problem. Our method is based on convex optimization, and is therefore tractable, with
computational complexity growing as m3. For m = 1000, the method can be carried out in
a few seconds, on a 2 GHz personal computer; for m = 100, the method can be carried out
in milliseconds. The method provides both a suboptimal choice of sensors, and a bound on
the performance that can be achieved over all possible choices. Thus, we get a suboptimal
design, and a bound on how suboptimal it is. Numerous numerical experiments suggest that
the gap between these two is often small. Our basic method can be followed by any local
optimization method. We have found, for example, that a greedy algorithm that considers
all possible swaps between the set of selected and unselected sensors, accepting any swaps
that improve the objective, can give a modest improvement in the quality of the sensor
selection. When this local search terminates it gives a 2-opt sensor selection, i.e., one for
which no swap of a selected and an unselected sensor has better objective value.

Prior and related work. The sensor selection problem arises in various applications,
including robotics [HM97], sensor placement for structures [Kam91, KP02], target tracking
[WYPE04, IB05], chemical plant control [KP99], and wireless networks [ZG04]. Sensor
selection in the context of dynamical systems is studied in, e.g., [GCHM06, KP98, Osh94].
Sensor selection, with a rather different setup from ours, has been studied in sensor network
management [REJ+07], hypothesis testing in a sensor network [DLT02], and discrete-event
systems [JKG03]. The sensor selection problem formulation we use in this paper can be found
in, e.g., [YSK93]. The sensor selection problem (and various extensions described in §5) can
be formulated in an information theoretic framework [CHZ02, MDW95, EFP03, ZSR02], and
in a Bayesian framework [CJ95, GJ95]. (We will comment on this in more detail later.)

The complexity of a sensor selection problem (though not the one we consider) is con-
sidered in [BKG06], where the authors show that it is NP-hard. (As far as we know, NP-
hardness of the sensor selection problem we consider has not been established.) The sensor
selection problem can be exactly solved using global optimization techniques, such as branch
and bound [Wel82, LW66]. These methods can, and often do, run for very long times, even
with modest values of k and m.

Several heuristics have been proposed to approximately solve the sensor selection prob-
lem. These include genetic algorithms [YSK93], and application specific local search meth-
ods. Local optimization techniques, similar to the one we describe, are summarized in
[NM92], [JD75]. While these heuristics can produce good suboptimal sensor selections, they
do not yield any guarantees or bounds on the performance that is achievable. In any case,
any local optimization method, including the ones described in these papers, and generic
methods such as randomized rounding [MR95], can be incorporated into our method.

The sensor selection problem is closely related to the D-optimal experiment design prob-
lem [Puk06, Fed72]. Here too we are to choose a subset of possible measurements from a
pallette of choices. In D-optimal experiment design, however, we consider the case when k
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and m both grow, with a constant ratio; the question is not which sensors to use, but how
frequently to use each one. The standard convex relaxation for the D-optimal experiment
design problem (see, e.g., [BV04, §7.5]) leads to a convex problem that is similar to ours,
but different; we will discuss the differences in more detail below.

Finally, we note that the idea of using convex relaxation as the basis for a heuristic
for solving a combinatorial problem is quite old, and has been observed to give very good
results in many applications. Recent problems that are solved using this general technique
are compressed sensing [Don06], sparse regressor selection [Tib96], sparse signal detection
[Tro06], sparse decoding [FKW03], and many others. Other applications that use convex
relaxations include portfolio optimization with transaction costs [LFB07], controller design
[HHB98], and circuit design [VBG97].

Outline. The rest of this paper is organized as follows. In §2 we formally describe the
sensor selection problem. In §3 we describe the basic convex relaxation, an approximate re-
laxation that can be solved even more efficiently, and a local optimization method to improve
the basic sensor selection. We illustrate the method, with and without local optimization,
with a numerical example, in §4. In §5 we describe a number of variations and extensions
on the sensor selection problem, than can be incorporated in the convex optimization frame-
work, including different objective functions, MAP estimation, constraints on sensors, and a
robust version of the sensor selection problem.

2 Sensor selection

2.1 Parameter estimation

Suppose we are to estimate a vector x ∈ Rn from m linear measurements, corrupted by
additive noise,

yi = aT
i x+ vi, i = 1, . . . , m, (1)

where x ∈ Rn is a vector of parameters to estimate, and v1, . . . , vm are independent identi-
cally distributed N (0, σ2) random variables. We assume that a1, . . . , am, which characterize
the measurements, span Rn. The maximum likelihood estimate of x is

x̂ =

(

m
∑

i=1

aia
T
i

)−1 m
∑

i=1

yiai. (2)

The estimation error x− x̂ has zero mean and covariance

Σ = σ2

(

m
∑

i=1

aia
T
i

)−1

.

The η-confidence ellipsoid for x− x̂, which is the minimum volume ellipsoid that contains
x− x̂ with probability η, is given by

Eα = {z | zT Σ−1z ≤ α}, (3)
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where α = F−1
χ2

n

(η). (Fχ2
n

is the cumulative distribution function of a χ-squared random

variable with n degrees of freedom.) A scalar measure of the quality of estimation is the
volume of the η-confidence ellipsoid,

vol(Eα) =
(απ)n/2

Γ(n/2 + 1)
det Σ1/2, (4)

where Γ is the Gamma function. Another scalar measure of uncertainty, that has the same
units as the entries in the parameter x, is the mean radius, defined as the geometric mean
of the lengths of the semi-axes of the η-confidence ellipsoid,

ρ(Eα) =
√
α(det Σ)1/2n. (5)

We will be interested in volume ratios, so it is convenient to work with the log of the
volume,

log vol(Eα) = β − (1/2) log det

(

m
∑

i=1

aia
T
i

)

, (6)

where β is a constant that depends only on σ, n, and η. The log volume of the confidence
ellipsoid, given in (6), gives a quantitative measure of how informative the collection of m
measurements is.

2.2 Sensor selection problem

Now we can describe the sensor selection problem. We consider a set of m potential mea-
surements, characterized by a1, . . . , am ∈ Rn; we are to choose a subset of k (≥ n) of them
that minimizes the log volume (or mean radius) of the resulting confidence ellipsoid. This
can be expressed as the optimization problem

maximize log det(
∑

i∈S aia
T
i )

subject to |S| = k,
(7)

where S ⊆ {1, . . . , m} is the optimization variable, and |S| denotes the cardinality of S. (We
interpret log det(

∑

i∈S aia
T
i ) as −∞ if

∑

i∈S aia
T
i is singular.) We let p⋆ denote the optimal

value of the sensor selection problem.
We can rewrite the problem (7) as

maximize log det(
∑m

i=1 ziaia
T
i )

subject to 1T z = k
zi ∈ {0, 1}, i = 1, . . . , m,

(8)

with variable z ∈ Rm. (The vector 1 is the vector with all entries one.) Here zi encodes
whether the ith measurement (or sensor) is to be used. This problem is a Boolean-convex
problem, since the objective is a concave function of z for zi ≥ 0 (see, e.g., [BV04, §3.1.5]),
the sum constraint is linear, and the last m constraints restrict z to be Boolean (i.e., 0-1).
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3 Convex relaxation

3.1 The relaxed sensor selection problem

By replacing the nonconvex constraints zi ∈ {0, 1} with the convex constraints zi ∈ [0, 1],
we obtain the convex relaxation of the sensor selection problem (7):

maximize log det(
∑m

i=1 ziaia
T
i )

subject to 1T z = k
0 ≤ zi ≤ 1, i = 1, . . . , m,

(9)

where z ∈ Rm is the variable. This problem, unlike the original sensor selection problem (7),
is convex, since the objective (to be maximized) is concave, and the equality and inequality
constraints on z are linear. It can be solved efficiently, for example, using interior-point
methods [BV04]. These methods typically require a few tens of iterations; each iteration can
be carried out (as we will see below) with a complexity of O(m3) operations, so the overall
complexity is O(m3) operations. We will let z⋆ denote a solution of the relaxed problem (9).

The relaxed sensor selection problem (9) is not equivalent to the original sensor selection
problem (7); in particular, z⋆

i can be fractional. We can say, however, that the optimal
objective value of the relaxed sensor selection problem (9), which we denote U , is an upper
bound on p⋆, the optimal objective value of the sensor selection problem (8). To see this, we
note that the feasible set for the relaxed problem contains the feasible set for the original
problem; therefore, its optimal value cannot be smaller than that of the original problem.

We can also use the solution z⋆ of the relaxed problem (9) to generate a suboptimal
subset selection Ŝ. There are many ways to do this; but we describe here the simplest
possible method. Let z⋆

i1
, . . . , z⋆

im denote the elements of z⋆ re-arranged in descending order.
(Ties can be broken arbitrarily.) Our selection is then

Ŝ = {i1, . . . , ik},

i.e., the indices corresponding to the k largest elements of z⋆. We let ẑ be the corresponding
0-1 vector. The point ẑ is feasible for the sensor selection problem (8); the associated
objective value,

L = log det

(

m
∑

i=1

ẑiaia
T
i

)

,

is then a lower bound on p⋆, the optimal value of the sensor selection problem (8).
The difference between the upper and lower bounds on p⋆,

δ = U − L = log det

(

m
∑

i=1

z⋆
i aia

T
i

)

− log det

(

m
∑

i=1

ẑiaia
T
i

)

,

is called the gap. The gap is always nonnegative; if it is zero, then ẑ is actually optimal for
the sensor selection problem (8); more generally, we can say that the subset selection ẑ is no
more than δ-suboptimal.
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We can relate the gap δ, which is a difference of log-determinants, to geometric properties
of confidence ellipsoids. A gap of δ corresponds to a ratio of exp(δ/2) in confidence ellipsoid
volume. In terms of the mean radius ρ, a gap of δ corresponds to a ratio exp(δ/2n).

Not much can be said about the gap, in general; for example, there are no generic useful
bounds on how large it can be. The gap is, however, very useful when evaluated for a given
problem instance.

3.2 Relation to D-optimal experiment design

Our sensor selection problem, and relaxed sensor selection problem, are closely related to
D-optimal experiment design. In D-optimal experiment design, we have a set of potential
measurements or sensors. In this case, however, we can use any one sensor multiple times; the
problem is to choose which sensors to use, and for each one, how many times to use it, while
keeping the total number of uses less than or equal to k. In contrast, in our sensor selection
problem, we can use each potential sensor at most once. One method for approximately
solving the D-optimal experiment design problem is to form a convex relaxation, that is
the very similar to ours; however, the upper bound constraints zi ≤ 1 are not present, and
the relaxed variables are normalized to have sum one (and not k); see, e.g., [BV04, §7.5].
The variables in the relaxed D-optimal experiment design problem also have a different
interpretation: zi is the frequency with which sensor i is to be used, when a large number of
measurements is made.

3.3 The dual problem

In this section we describe a dual for the relaxed sensor selection problem, which has an
interesting interpretation in terms of covering ellipsoids. The dual of the relaxed sensor
selection problem is

minimize log det Λ−1 − n+ kν + 1Tµ
subject to ν + µi ≥ aT

i Λai, i = 1, . . . , m
µi ≥ 0, i = 1, . . . , m,

(10)

with variables Λ ∈ Sn, µ ∈ Rn, and ν ∈ R. (The set of n×n symmetric matrices is denoted
by Sn.) See Appendix A for the derivation.

This dual problem can be interpreted as the problem of finding the minimum volume
covering ellipsoid with outlier detection; see [SF04, DPWH04]. (This should not be surpris-
ing because the dual of the D-optimal experiment design problem is the minimum volume
covering ellipsoid problem [BV04, 7.5.3].)

If µi are set to 0, the optimal solution ν∗ and Λ∗ determine the minimum volume ellipsoid,
given by {x | xT Λ∗x ≤ ν∗}, that contains the m points a1, . . . , am. When the variable µi is
positive, ai is allowed to be outside this ellipsoid, i.e., it is an outlier. We now show that,
at optimality, at most k of the µi are nonzero. This can be inferred in many ways. Let Λ⋆,
µ⋆, and ν⋆ be an optimal solution of the problem (10). The dual variables µi are associated
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with the inequalities zi ≤ 1 and by complementary slackness we have

µ⋆
i (1 − z⋆

1) = 0, i = 1, . . . , m.

Since all the z⋆
i are positive and sum to k, at most k of the z⋆

i are 1 and thus at most k of the
µ⋆

i are nonzero. Therefore the solution of the problem (10) determines a covering ellipsoid
for the m points a1, . . . , am, with at most k outliers.

3.4 Approximate relaxed sensor selection

It is not necessary to solve the relaxed sensor selection problem (9) to high accuracy, since
we use it only to get the upper bound U , and to find the indices associated with the largest k
values of its solution. In this section we describe a simple method for solving it approximately
but very efficiently, while retaining a provable upper bound on p⋆. This can be done by
solving a smooth convex problem, which is closely related to the subproblems solved in an
interior-point method for solving the relaxed problem.

The approximate relaxed sensor selection problem is

maximize ψ(z) = log det(
∑m

i=1 ziaia
T
i ) + κ

∑m
i=1(log(zi) + log(1 − zi))

subject to 1T z = k,
(11)

with variable z ∈ Rm. Here κ is a positive parameter that controls the quality of approxima-
tion. In the approximate relaxed sensor selection problem, we have implicit constraints that
zi ∈ (0, 1). The function ψ is concave and smooth, so the problem (11) can be efficiently
solved by Newton’s method, which we describe in detail below. Let z∗ denote the solution
of the approximate relaxed sensor selection problem (11).

A standard result in interior-point methods [BV04, §11.2] is that z∗ is at most 2mκ
suboptimal for the relaxed sensor selection problem (9):

log det

(

m
∑

i=1

z∗i aia
T
i

)

≥ log det

(

m
∑

i=1

z⋆
i aia

T
i

)

− 2mκ = U − 2mκ.

In particular, we can use

Ũ = log det

(

m
∑

i=1

z∗i aia
T
i

)

+ 2mκ (12)

as an upper bound on p⋆.
We can use this bound to choose κ so that, in terms of ρ, the increase in gap contributed

by the term 2mκ, which is a factor of exp(2mκ/2n), is small, say, 1%. This corresponds to
κ ≈ 0.01n/m.

Newton’s method. We now briefly describe Newton’s method for solving (11); for full
details see, e.g., [BV04, §10.2]. As initial (feasible) point we take z = (k/m)1. At each step,
we compute the Newton search step ∆znt, which can be expressed as

∆znt = −(∇2ψ)−1∇ψ +

(

1T (∇2ψ)−1∇ψ
1T (∇2ψ)−11

)

(∇2ψ)−11. (13)
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We then use a backtracking line search to compute a step size s ∈ (0, 1], and update z by
replacing it with z + s∆znt. We stop when the Newton decrement (−∇ψT ∆znt)

1/2 is small.
The total number of steps required is typically ten or fewer.

For completeness we give expressions for the derivatives of ψ. Its gradient is given by

(∇ψ)i = aT
i Wai + κ/zi − κ/(1 − zi), i = 1, . . . , m,

where

W =

(

m
∑

i=1

ziaia
T
i

)−1

.

The Hessian ∇2ψ is given by

∇2ψ = −(AWAT ) ◦ (AWAT ) − κdiag(1/z2
1 + 1/(1 − z1)

2, . . . , 1/z2
m + 1/(1 − zm)2),

where ◦ denotes the Hadamard (elementwise) product and A is the measurement matrix :

A =









aT
1
...
aT

m









. (14)

We can give a complexity analysis for computing the Newton step ∆znt using (13). We
first form

∑m
i=1 ziaia

T
i , which costs O(mn2) operations, and compute its Cholesky factor,

which costs O(n3). We then form AWAT and ∇2ψ, which costs O(m2n). We compute its
Cholesky factorization, which costs O(m3) (which dominates all other costs so far). Once
we have computed the Cholesky factorization of ∇2ψ, we can compute ∆znt at cost O(m2).
Thus, the overall cost is O(m3). Moreover, the hidden constant is quite modest, since the
cost is dominated by the Cholesky factorization of an m ×m matrix, which can be carried
out in (1/3)m3 operations.

3.5 Local optimization

The construction of a feasible selection ẑ from the solution of the (approximate) relaxed
problem (11) z∗ can be (possibly) improved by a local optimization method. One simple
method to carry this out is to start from ẑ, and check sensor selections that can be derived
from ẑ by swapping one of the k chosen sensors (i.e., i1, . . . , ik) with one of the m−k sensors
not chosen. For similar methods, see, e.g., Fedorov’s exchange algorithm [Fed72, MN94] or
Wynn’s algorithm [Wyn72].

We can determine whether a sensor swap increases the objective value more efficiently
than by computing the new objective value from scratch. Suppose we are to evaluate the
change in objective value when sensor j is removed from our selection, and sensor l (which
was not originally chosen) replaces it. We let Σ̂ denote the error covariance with the original
subset selection,

Σ̂ =

(

m
∑

i=1

ẑiaia
T
i

)−1

,

8



and we let Σ̃ denote the error covariance when sensor j is swapped with sensor l,

Σ̃ =

(

m
∑

i=1

ẑiaia
T
i − aja

T
j + ala

T
l

)−1

.

Using the low-rank update formula for the determinant of a matrix we have

det Σ̃−1 = det(Σ̂−1 − aja
T
j + alal)

= det Σ̂−1 det

(

I +

[

aT
j

aT
l

]

Σ̂ [−aj al]

)

.

We can determine whether swapping j and l increases the objective, i.e., whether det Σ̃−1 >
det Σ̂−1, by evaluating the determinant of the 2 × 2 matrix

S = I +

[

aT
j

aT
l

]

Σ̂ [−aj al].

The computation effort required to calculate this matrix is O(n2). (In contrast, computing
det Σ̃ from scratch requires O(n3), so the savings here is O(n)). A small gain in efficiency
can be obtained by recognizing

detS = 1 + aT
l Σ̂al − aT

j Σ̂aj + (aT
l Σ̂aj)

2 − (aT
l Σ̂al)(a

T
j Σ̂aj)

≤ 1 + aT
l Σ̂al − aT

j Σ̂aj,

remembering the previously calculated products of the form aT
i Σ̂ai, and checking aT

l Σ̂al >
aT

j Σ̂aj before calculating detS.
Now we continue our description of the local optimization method. Given the current

sensor selection, we attempt a search over all possible k(m − k) swaps. If we find that no
swap increases the objective value, the algorithm terminates. The solution so obtained is
called 2-opt, because exchanging any one selected sensor with any unselected one will not
improve the solution.

If, however, we encounter a swap that increases the objective value, we (greedily) update
ẑ to correspond to the new sensor selection, replacing Σ̂ by Σ̃. The matrix Σ̃ can be evaluated
efficiently using the matrix inversion lemma (also known as Woodbury formula):

Σ̃ = Σ̂ − Σ̂ [−aj al]

(

I +

[

aT
j

aT
l

]

Σ̂ [−aj al]

)−1 [

aT
j

aT
l

]

Σ̂.

The computation effort required to calculate Σ̃ given Σ̂ is O(n2). With the new sensor
selection ẑ we restart the search for an improving swap.

The local optimization algorithm must terminate because there is only a finite number of
sensor selections that are better than the original one. The total number of local optimization
steps can be very large (in theory); so we can simply limit the number of steps taken, say to
Nloc. (We should mention that we have never observed an example that requires a very large
number of local optimization steps.) If Nloc is chosen to grow no faster than m3/n2, then
the total computational effort of the local optimization method will be O(m3), the same as
solving the relaxed sensor problem.
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More sophisticated local optimization. The local optimization method described above
does not use the solution of the (approximate) relaxed sensor selection problem z∗; instead
it proceeds directly from the rounded estimate ẑ. More sophisticated rounding methods can
use the approximate relaxed point z∗. For example, in a randomized rounding scheme, z∗i is
interpreted as the probability of selecting sensor i. In the local optimization method, we can
use z∗ to order the sensors which are checked for possible swapping. (In the local optimiza-
tion described above, the sensors are checked according to their index.) More specifically,
we choose unselected sensors in descending order of the z∗i values, and we pick the selected
sensors in ascending order of the z∗i values. The intuition behind this scheme is that a sensor
with higher z∗i is more likely to be in the globally optimal sensor selection. To determine the
ordering we need to sort the sensors according to the values only one time, and then main-
tain the ordering when a swap is taken. The initial sorting requires a computation effort of
O(m logm), which for practical values of m and k is dominated by the computational effort
needed to check the k(m − k) swaps. We can also restrict the swaps to be among those
sensors for which z∗i is in the interval [0.1, 0.9] (or some interval, possibly symmetric, around
1/2). This drastically reduces the number of swaps to be checked (and number of sensors to
be sorted), and therefore speeds up the local optimization.

4 Example

In this section we illustrate the sensor selection method with a numerical example. We
consider an example instance with m = 100 potential sensors and n = 20 parameters to
estimate. The measurement vectors a1, . . . , am are chosen randomly, and independently,
from an N (0, I/

√
n) distribution. We solve the relaxed problem (11), with κ = 10−3, and

find suboptimal subset selections, with and without local optimization, for k = 20, 21, . . . , 40.
To solve each approximate relaxed problem requires 11 Newton steps, which would take

a few milliseconds in a C implementation, run on a typical 2 GHz personal computer. For
each problem instance, the (basic) local search checks 4000–12000 sensor swaps, and around
3–20 swaps are taken before a 2-opt solution is found. We also the run the restricted version
on the local search, which only considers sensors with z∗i value in the interval [0.1, 0.9]. This
local search produces an equally good final sensor selection, while checking a factor 10–15
times fewer swaps than the basic method. (In any case, the basic local search only takes
milliseconds to complete, on a typical personal computer, for a problem instance of this size.)

To show the quality of the sensor subsets chosen, we evaluate the upper bound Ũ (given
by (12)), the lower bound L using the simple selection rule, and the (possibly) better lower
bounds Lloc and Lloc(r) obtained after local optimization and restricted local optimization,

respectively, for each value of k. The top half of Figure 1 shows Ũ , L, Lloc, and Lloc(r), and

the bottom half shows the gaps δ = Ũ −L, δloc = Ũ −Lloc, and δloc(r) = Ũ −Lloc(r). We also
express the gaps as the ratio of mean radii, exp(δ/2n), exp(δloc/2n) and exp(δloc(r)/2n), in
Figure 2.

These plots show that very good sensor selections are obtained. For example, with
k = 25, the relaxation followed by 2-opt local optimization produces a design which is at
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Figure 1: Top: Upper bound Ũ (top curve); lower bounds Lloc and Lloc(r)

(middle curves); lower bound L (bottom curve). Bottom: Gap δ (top curve);
δloc and δloc(r) (bottom curves).
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Figure 2: Gaps expressed as ratios of mean radii: exp(δ/2n) (top curve);
exp(δloc/2n) and exp(δloc(r)/2n) (bottom curves).

most 5.3% suboptimal, as measured by mean radius of the confidence ellipsoid. (This is
only a bound; it is likely that the sensor selection found is closer to optimal than 5.3%.) We
can see that restricted local optimization performs as well as basic local optimization; the
two curves are barely distinguishable. (In the figures, the values corresponding to the basic
local optimization are shown by the dashed curve, and to the restricted local optimization
are shown by the dash-dotted curve.) To find the globally optimally best sensor selection by

direct enumeration would require evaluating the objective
(

100
25

)

times, which is on the order

of 1023 times, and clearly not practical.

5 Extensions

5.1 Other measures of estimation quality

So far we have used the volume of the confidence ellipsoid as our measure of the quality of
estimation obtained by a sensor subset selection. Several other measures can be used instead
of this one.

Mean squared error. The mean squared error in estimating the parameter x is

E(‖x− x̂‖2) = tr(Σ).

12



The associated sensor selection problem can be expressed as the optimization problem

minimize tr
(

∑m
i=1 ziaia

T
i

)−1

subject to 1T z = k
zi ∈ {0, 1}, i = 1, . . . , m,

with variable z ∈ Rm. The optimization problem obtained by relaxing the 0-1 constraint
is convex; see [BV04, §7.5]. (In the context of experiment design, this measure leads to
so-called A-optimal experiment design.)

Worst case error variance. The variance of the estimation error in the direction q ∈ Rn,
with ‖q‖ = 1, is

E(qTx)2 = qTΣq.

The worst case variance of the estimation error, over all directions, is

max
‖q‖=1

qTΣq = λmax(Σ),

the maximum eigenvalue of Σ. The associated sensor selection problem can be expressed as
the optimization problem

maximize λmin

(

∑m
i=1 ziaia

T
i

)

subject to 1T z = k
zi ∈ {0, 1}, i = 1, . . . , m,

with variable z ∈ Rm. Relaxing the 0-1 constraint we obtain a convex problem. (In the
context of experiment design, this measure leads to so-called E-optimal experiment design.)

Worst case coordinate error variance. The variance of the ith coordinate of the esti-
mation error, xi − x̂i, is Σii. The worst case coordinate error variance is the largest diagonal
entry of the covariance matrix. Choosing the sensor subset to minimize this measure can be
expressed as the problem

minimize maxj=1,...,n

(

(
∑m

i=1 ziaia
T
i )−1

)

jj

subject to 1T z = k
zi ∈ {0, 1}, i = 1, . . . , m,

(15)

with variable z. Relaxing the 0-1 constraint we obtain a convex problem.
In fact the problem can be transformed to a semidefinite program (SDP), and therefore

efficiently solved. Writing the problem (15) in epigraph form and relaxing the 0-1 constraint,
we obtain

minimize t

subject to t ≥ eT
j

(

(
∑m

i=1 ziaia
T
i )−1

)

ej , j = 1, . . . , m

1T z = k
0 ≤ zi ≤ 1, i = 1, . . . , m,

13



with variables z ∈ Rm and t ∈ R. The vector ei is the vector with 1 in the ith entry and 0
in the rest of the entries. This problem is equivalent to

minimize t

subject to

[

t eT
j

ej
∑m

i=1 ziaia
T
i

]

� 0, j = 1, . . . , m

1T z = k
0 ≤ zi ≤ 1, i = 1, . . . , m,

with variables z and t. (The symbol � represents inequality with respect to the positive
semidefinite matrix cone.) This is a semidefinite program.

5.2 Sensor selection constraints

Many constraints on the selection of the sensors can be represented as linear equalities or
inequalities on the variable z, and so are easily incorporated into the convex relaxation. We
describe some typical cases below.

Logical constraints.

• ‘Only when’ constraints. The constraint that sensor i can be chosen only when sensor j
is also chosen can be expressed as zi ≤ zj .

• ‘Not both’ constraints. The constraint that sensor i and sensor j cannot both be chosen
can be expressed as zi + zj ≤ 1.

• ‘At least one of’ constraints. To require that one of sensor i or sensor j be chosen, we
impose the constraint zi + zj ≥ 1.

These are easily extended to more complex situations. For example, to require that exactly
two of the four sensors i, j, k, l be chosen, we impose the linear equality constraint zi + zj +
zk + zl = 2.

Budget constraints. In addition to limiting the number of sensors chosen to k, we can
impose other resource limitations on the sensor selection. Suppose that ci is some cost (say,
in dollars, power, or weight) associated with choosing sensor i. We can impose a budget
constraint on the selection, i.e., a maximum allowed cost for the selection, as cT z ≤ B,
where B is the budget.

5.3 Vector measurements

In our setup so far, each sensor gives a scalar measurement. Now suppose the measurements
yi are vectors, i.e., sensor i gives not one, but several scalar measurements of the parameters.
The m potential measurements are

yi = AT
i x+ vi, i = 1, . . . , m,

14



where yi ∈ Rmi , x ∈ Rn. The measurement noises v1, . . . , vm are independent random
variables, with N (0, σ2I) distribution. The sensor selection problem can be expressed as

maximize log det(
∑m

i=1 ziAiA
T
i )

subject to 1T z = k
zi ∈ {0, 1}, i = 1, . . . , m,

with variable z ∈ Rm. Relaxing the 0-1 constraint we obtain a convex problem. (The
same problem can be also be obtained by associating each component of yi with a separate
measurement, and adding constraints that require that if any scalar measurement from yi is
used, all must be.)

5.4 MAP estimation

We have so far worked with maximum likelihood estimation. We can easily extend the
method to the Bayesian framework. Suppose the prior density of x is N (0,Σx). The max-
imum a posteriori probability (MAP) estimate of x, with selected sensors characterized by
z, is

x̂map =

(

σ−2
m
∑

i=1

ziaia
T
i + Σ−1

x

)−1 m
∑

i=1

yiai.

The estimation error x− x̂map has zero mean and covariance

Σmap(z) =

(

σ−2
m
∑

i=1

ziaia
T
i + Σ−1

x

)−1

. (16)

The problem of choosing k sensors to minimize the volume of the resulting η-confidence
ellipsoid reduces to

maximize log det(σ−2∑m
i=1 ziaia

T
i + Σ−1

x )
subject to 1T z = k

zi ∈ {0, 1}, i = 1, . . . , m,
(17)

with variable z ∈ Rm. Relaxing the 0-1 constraint results in a convex optimization problem.
Since the log det of the covariance matrix of a Gaussian random variable is the entropy

of the random variable (differing by a constant), the problem (17) can be obtained via an
information theoretic approach. Let ỹ(z) be the sensor measurement vector when sensors
characterized by z are chosen. The problem of choosing k sensors to minimize the entropy
of the random variable x|ỹ(z), or to maximize the mutual information between x and the
resulting measurement vector ỹ(z), is the problem (17).

5.5 Estimating a linear function of the parameters

Suppose the goal is to estimate x̃ = Cx ∈ Rñ, a linear function of the parameter x, where
C ∈ Rñ×n has rank ñ. The prior density of x is N (0,Σx), so the prior density of x̃ is
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N (0,Σx̃), where Σx̃ = CΣxC
T . The covariance of the error of the MAP estimate of x̃ is

CΣmap(z)C
T , where Σmap(z) is given by (16). The problem of choosing k sensors to minimize

the volume of the resulting confidence ellipsoid is

minimize log det
(

C(σ−2∑m
i=1 ziaia

T
i + Σ−1

x̃ )−1CT
)

subject to 1T z = k
zi ∈ {0, 1}, i = 1, . . . , m,

(18)

with variable z ∈ Rm.
Relaxing the constraints zi ∈ {0, 1} to 0 ≤ zi ≤ 1 yields a convex problem. This relaxed

problem can be solved directly by the Newton’s method described in §3.4, for which we need
the gradient and Hessian of the objective function. The objective function is

φ(z) = log det
(

CXCT
)

,

where X ∈ Sn is

X =

(

σ−2
m
∑

i=1

ziaia
T
i + Σ−1

x̃

)−1

.

(To simplify notation we do not write X explicitly as a function of z.) The gradient of the
function φ is

(∇φ)i = −σ−2aT
i XC

T
(

CXCT
)−1

CXai, i = 1, . . . , m.

The Hessian of the function φ is

(∇2φ)ij = 2σ−4
(

aT
i Xaj

)

(

aT
i XC

T
(

CXCT
)−1

CXaj

)

− σ−4
(

aT
i XC

T
(

CXCT
)−1

CXaj

)2

,

i = 1, . . . , m, j = 1, . . . , m,

which can be written compactly as

∇2φ = σ−4(2P −Q) ◦Q,

where
P = AXAT , Q = AXCT

(

CXCT
)−1

CXAT ,

and A is given by (14).
The problem (18) can also be solved by transforming it to a standard one. We introduce

a new variable, a lower triangular matrix L ∈ Rñ×ñ, and write the relaxed version of the
problem (18) as

minimize log det(LLT )−1

subject to 1T z = k
0 ≤ zi ≤ 1, i = 1, . . . , m
(LLT )−1 � C(σ−2∑m

i=1 ziaia
T
i + Σ−1

x̃ )−1CT

L lower triangular,

(19)
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with variables z ∈ Rm and L ∈ Rñ×ñ. The objective function is

log det(LLT )−1 = −2 log det(L) = −2
ñ
∑

i=1

logLii,

since L is lower triangular. The constraint that the lower triangular matrix L is invertible
is implicit, since the objective function requires that Lii > 0.

The matrix inequality

(LT )−1L−1 � C

(

σ−2
m
∑

i=1

ziaia
T
i Σ−1

x̃

)−1

CT

can be written as

I � LTC

(

σ−2
m
∑

i=1

ziaia
T
i + Σ−1

x̃

)−1

CTL,

which is equivalent to
[

I LTC
CTL σ−2∑m

i=1 ziaia
T
i + Σ−1

x̃

]

� 0.

(Here we use
∑m

i=1 ziaia
T
i + Σ−1

x̃ ≻ 0.)
The problem (19) is therefore equivalent to

maximize
∑ñ

i=1 logLii

subject to 1T z = k
0 ≤ zi ≤ 1, i = 1, . . . , m
[

I LTC
CTL σ−2∑m

i=1 ziaia
T
i + Σ−1

x̃

]

� 0

L lower triangular,

(20)

with variables z ∈ Rm and L ∈ Rñ×ñ.
A similar approach can handle the problem of estimating a linear function of the variable

x in the maximum likelihood framework, but this requires additional technical conditions.

5.6 Robust sensor selection

In this section we consider the sensor problem with some uncertainty in the measurement
vectors. The uncertainty is characterized by a given set A in which the measurement matrix
A, given by (14), can take any value. In terms of A, the objective of the sensor selection
problem (8) can be written as

log det(ATdiag(z)A),

where diag(z) ∈ Rm×m is the diagonal matrix with entries z1, . . . , zm.
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In the robust sensor selection problem we choose k sensors to minimize the worst case
mean radius of the resulting confidence ellipsoid, which can be written as

maximize infA∈A log det(ATdiag(z)A)
subject to 1T z = k

zi ∈ {0, 1}, i = 1, . . . , m,
(21)

with variables z ∈ Rm. The problem data is the set A.
The objective function of the robust optimization is problem (21), for zi ≥ 0, is the

infimum of a family of concave functions, and therefore concave. Thus the problem (21),
after relaxing the 0-1 constraints, is a convex optimization problem.

The relaxed robust sensor selection problem can be written as

maximize log det(U)
subject to 1T z = k

0 ≤ zi ≤ 1, i = 1, . . . , m
U � AT diag(z)A, for all A ∈ A,

with variables z ∈ Rm and the symmetric (positive definite) matrix U ∈ Rm×m. If the set
A is finite, this is a standard convex optimization problem. If the set A is not finite, which
usually is the case, the problem is a semi-infinite convex optimization problem, which can
be solved using various general techniques, such as sampling; see, e.g., [HK93, MB07]. In
some cases (as we will see below), the semi-infinite problem can be simplified and solved.

We now consider the specific uncertainty model

A ∈ A = {Ā+ ∆ | ‖∆‖2 ≤ ǫ} (22)

the semi-infinite constraint can represented as a (simple) linear matrix inequality (LMI)
constraint, thereby simplifying the robust sensor selection problem to a standard SDP. The
constraint ‖∆‖2 ≤ ǫ can be written as ∆T ∆ � ǫ2I. The semi-infinite constraint in terms of
Ā and ∆ is

U � ĀTdiag(z)Ā+ ĀT diag(z)∆ + ∆Tdiag(z)Ā + ∆Tdiag(z)∆, for all ∆T ∆ � ǫ2I.

Theorem 3.3 in [LSZ04, §3] implies that the above semi-infinite quadratic matrix inequality
holds if and only if the matrix inequality

[

ĀTdiag(z)Ā− U − tI ĀT diag(z)
diag(z)Ā diag(z) + (t/ǫ2)I

]

� 0

is feasible for some t ≥ 0. The matrix inequality is linear in z, U , and t. The relaxed robust
sensor selection for the uncertainty model (22) is

maximize log det(U)
subject to 1T z = k

0 ≤ zi ≤ 1, i = 1, . . . , m
[

ĀT diag(z)Ā− U − tI ĀTdiag(z)
diag(z)Ā diag(z) + (t/ǫ2)I

]

� 0

t ≥ 0,

with variables z, U , and t.
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5.7 Example

In this section we consider an example that combines three of the extensions. We consider
a discrete-time linear dynamical system

x(t+ 1) = Fx(t), t = 1, . . . , m+ 1, (23)

where x(t) ∈ Rn is the state at time t, and F ∈ Rn×n is the dynamics matrix, which we
assume is invertible. We have linear noise corrupted measurements,

y(t) = Hx(t) + v(t), t = 1, . . . , m, (24)

where y(t) ∈ Rp is the measurement at time t, v(t) ∈ Rp is the measurement noise at time
t, and H ∈ Rp×n is the measurement matrix. We assume the noise vectors v1, . . . , vm are
independent identically distributed N (0, I) random variables. The initial state x(1) has a
prior probability density N (0,Σ1), and is independent of the noise vectors.

We consider the problem of choosing a set of k (vector) measurements out of the m
(vector) measurements of the state, in order to minimize the mean squared error in estimating
x(m + 1). This corresponds to choosing a set of k times (out of the m possible times) at
which to obtain the measurements.

We can express the measurements as








y(1)
...

y(m)









=









HF−m

...
HF−1









x(m+ 1) +









v(1)
...

v(m)









.

The prior density of x(m+1) is N (0,Σm+1), where Σm+1 = FmΣ1F
mT . The MAP estimation

error for x(m+ 1) is zero mean, with covariance

Σ(z) =

(

m
∑

i=1

zi(HF
−m+i−1)THF−m+i−1 + Σ−1

m+1

)−1

,

where z ∈ Rm characterizes the selected measurement times. The problem of choosing k
times at which to take state measurements, in order to minimize the resulting mean square
estimation error of x(m+ 1), can be formulated as

minimize tr(Σ(z))
subject to 1T z = k

z ∈ {0, 1}, i = 1, . . . , m,
(25)

where z is variable. Relaxing the 0-1 constraints we obtain a convex optimization problem,
which can be transformed to the semidefinite program

minimize tr(Y )
subject to 1T z = k

0 ≤ zi ≤ 1, i = 1, . . . , m
[

Y I
I

∑m
i=1 zi(HF

−m+i−1)THF−m+i−1 + Σ−1
m+1

]

� 0,

(26)
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Figure 3: Mean squared error versus time for the sample time selection char-
acterized by ẑ.

with variables z ∈ Rm and Y ∈ Sn.
We now consider a numerical instance of the problem. We take state dimension n = 5,

measurement dimension p = 2, over time interval m = 100, out of which we are to choose
k = 10 times. We take the covariance of x(1) to be Σ1 = I. The dynamics matrix F has
eigenvalues

0.99 ± 0.05i, 1.01 ± 0.03i, 0.98,

i.e., a slowing growing, and a slowing decaying, oscillatory modes. The entries of the matrix
H are chosen independently from the uniform distribution on [−0.1, 0.1].

We solve the semidefinite program (26) using CVX [GBY07] to obtain the solution of the
relaxed problem z⋆, and select the k times with the largest values of z⋆

i . The chosen times
are

72, . . . , 79, 99, 100.

The objective value (mean square error) for this choice of 10 sample times is very close to the
lower bound, given by the optimal value of the problem (25), so our choice is near globally
optimal (and in particular, there is no need for local optimization).

In Figure 3 we plot the mean square estimation error of x(m + 1), given the chosen
measurements up to time t, which is given by tr(Σ(ẑ, t)), where

Σ(ẑ, t) =

(

t
∑

i=1

ẑi(HF
−m+i−1)THF−m+i−1 + Σ−1

m+1

)−1

, t = 0, . . . , m,

where ẑ is the (0-1) sample time selection. This mean square error drops after each mea-
surement is taken. We can see that the largest drop in mean square estimation error occurs
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during the burst of measurements taken over the interval t = 72 to t = 79; a small further
improvement occurs in the last two time steps.

6 Conclusion

The problem of choosing k sensors or measurements, from among a set of candidate mea-
surements, in order to obtain the best resulting estimate of some parameters, is in general a
difficult combinatorial problem. We have shown, however, that convex relaxation, followed
by a local optimization method, can often work very well. In particular, this method pro-
duces not only a suboptimal choice of measurements, but also, a bound on how well the
globally optimal choice does. The performance achieved by the suboptimal choice is often
very close to the global bound, which certifies that the choice is nearly optimal. Our method
does not give a prior guarantee on this gap; but each time the method is used, on a particular
problem instance, we get a specific bound.
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Appendix

A Derivation of the dual problem

In this section we derive the dual of the relaxed sensor selection problem (9). We introduce
a new variable X =

∑m
i=1 ziaia

T
i and write the relaxed sensor selection problem (9) as

minimize log detX−1

subject to X =
∑m

i=1 ziaia
T
i

1T z = k
0 ≤ zi ≤ 1, i = 1, . . . , m,

(27)

with variables z ∈ Rm andX ∈ Sn (set of symmetric n×nmatrices). To form the Lagrangian
of the problem (27) we introduced Lagrange multipliers λi for zi ≥ 0, µi for zi ≤ 1, ν for
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1T z = k, and Λ for X =
∑m

i=1 ziaia
T
i . The Lagrangian L is

L(z,X,Λ, λ, µ, ν) = log detX−1 + tr(XΛ) −
m
∑

i=1

zia
T
i Λai + ν(1T z − k) − λT z − µT (1 − z),

where Λ ∈ Sn, λ ∈ Rm, µ ∈ Rm, and ν ∈ R. Rearranging the terms we get

L(z,X,Λ, λ, µ, ν) = log detX−1 + tr(XΛ) +
m
∑

i=1

zi(ν − aT
i Λai − λi + µi) − kν − 1Tµ.

The Lagrange dual function g is given by

g(Λ, λ, µ, ν) = inf
z,X

L(z,X,Λ, λ, µ, ν).

Minimum of L over zi is bounded only if

ν − aT
i Λai − λi + µi = 0.

Minimizing L over X yields X−1 = Λ. The Lagrange dual function g is

g(Λ, λ, µ, ν) =

{

log det Λ + n− kν − 1Tµ ν + µi − aT
i Λai = λi, i = 1, . . . , m

−∞ otherwise.

The dual problem is

maximize log det Λ + n− kν − 1Tµ
subject to ν + µi − aT

i Λai = λi, i = 1, . . . , m
λi ≥ 0, i = 1, . . . , m
µi ≥ 0, i = 1, . . . , m,

(28)

with variables Λ, λ, µ, and ν. (The constraint Λ ≻ 0, i.e., Λ positive definite, is implicit.)
The variable λ can be eliminated, and we write the dual problem as

minimize log det Λ−1 − n+ kν + 1Tµ
subject to ν + µi ≥ aT

i Λai, i = 1, . . . , m
µi ≥ 0, i = 1, . . . , m,

(29)

with variables Λ ∈ Sn, µ ∈ Rn, and ν ∈ R.
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