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Abstract

Pulse compression radar systems make use of transmit code sequences and receive filters that are specially designed

to achieve good range resolution and target detection capability at practically acceptable transmit peak power levels.

The present paper is a contribution to and a survey of the literature on the problem of designing transmit codes and

receive filters for radar. In a nutshell: the main goal of this paper, which considers the cases of both negligible and non-

negligible Doppler shifts, is to show how to design the receive filter (including its length) and the transmit code sequence

via the optimization of a number of relevant metrics considered separately or in combination. The paper also contains

several numerical studies whose aim is to illustrate the performance of the presented designs. Compared with most of the

previously published works on the subject, the present contribution is more coherent as well as more complete, and yet

the approach taken here is generally simpler both conceptually and computationally. Finally, we remark on the fact that

while the focus of this paper is on radar systems, for the sake of being specific, the theory and design methods presented

should be useful to several other active sensing applications, such as sonar, non-destructive testing, seismic exploration,

and biomedical imaging.
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I. INTRODUCTION AND PRELIMINARIES

Possible applications of the theory and methods presented in this paper are in active sensing as used in radar,

sonar, non-destructive testing, seismic exploration, and biomedical imaging. For the sake of being specific, in

the following we focus on the radar application.

Improving the range resolution and target detection capability of a radar system can be done by decreasing

the width of the probing pulse and increasing the transmitted energy. However, doing so leads inevitably to

large transmit peak power levels that are unacceptable in most systems. Pulse compression is an approach

widely used to circumvent the large power peak problem. In this approach, a relatively long train of modulated

subpulses is transmitted towards the area of interest. The said subpulses may be rectangular or they may have

a different shape – we will not be concerned with the subpulse design in this paper. In any case, the subpulse

train will have a much smaller peak power than a single pulse, at the same total transmitted energy.

Let N denote the number of subpulses and let {sn}N
n=1 be the modulating code sequence. The signal that

arrives at the receiver of the radar system is first demodulated (by means of subpulse matched filtering) and

then analog-to-digital converted. The so-obtained received sequence can be modelled as follows. Let {yn}N
n=1

denote a segment (or window) of the received sequence, which is temporally aligned with the return from the

range bin of interest. Then under some mild conditions (see Equation (6) below), we can write {yn} as (see,

e.g., [1]–[4]):
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, (1)

where {εn} denote the noise samples, {αk} are complex-valued scalars proportional to the radar cross sections

(RCS’s) of the range bins illuminated by the radar system, and α0 corresponds to the range bin of current

interest. Obviously, equations similar to (1) can be written for other range bins, e.g., corresponding to α1, α−1,

etc., by picking up the right segment (or sliding window) of the received sequence. Note that Equation (1)

1



is a special case of Equation (6) presented in the next section, and so the same conditions as detailed in the

following section are required for both (1) and (6) to hold. Also, note that (1) assumes that there is no Doppler

shift. This assumption, which does not hold when some targets illuminated by the radar are rapidly moving

with unknown directions and velocities, will be relaxed in Section IV.

Remark: The model (1) can be re-written as a convolution sum:

yn =
N−1∑

k=−N+1

αksn−k + εn, n = 1, · · · , N, (2)

where sk = 0 for k /∈ [1, N ]. Equivalently, we can write (2) as:

yn =
N∑

k=1

skαn−k + εn, n = 1, · · · , N. (3)

The above convolution sum-based models are sometimes used in lieu of (1) (see, e.g., [4]–[6]). However, for

our purposes in this paper, the form (1) of the model is more convenient. 2

A main problem of the radar’s signal processor is to estimate the RCS parameters {αk} from the observations

{yn}, and to detect which ones of these RCS’s can be considered to take on “significant” values. One can see,

for instance from (1), that this is not an easy problem: in particular, note that the number of unknowns {αk}
in (1) is larger than the number of observations {yn}. In coded pulse compression systems, one of the most

commonly used methods for estimating the RCS’s is based on matched filtering (MF):

α̂0 =

∑N
n=1 s∗nyn∑N
n=1 |sn|2

, (4)

where (·)∗ denotes the conjugate transpose for matrices and the complex conjugate for scalars. Evidently, this

is nothing but the least-squares estimate of α0 in (1), which has good statistical properties only if the vector

multiplying α0 in (1) is (nearly) orthogonal to the other vectors in that equation; mathematically this condition

can be expressed as:

|∑N
n=1 s∗nsn−k|∑N
n=1 |sn|2

¿ 1, for k = −N + 1, · · · ,−1, 1, · · · , N − 1. (5)

where sk = 0 for k /∈ [1, N ]. Whenever (5) holds true, the MF-based receiver achieves nearly perfect pulse

compression (that is to say, the output of the said receiver resembles the signal received by a system that

transmits a single pulse).

Sequences {sn} that are coded in both phase and amplitude offer most flexibility for satisfaction of (5).

However, such sequences are not common in practical systems due to the high cost of providing amplitude
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modulation. Typically, the current radar systems use phase-coded sequences, quite often binary sequences,

which are easy to generate in a radar transmitter. In this paper, particularly in its numerical case studies, we

will focus on the cases in which {sn} is a binary sequence that takes on the values ±1. However, most of the

results, methods, and discussions in the following hold for arbitrary code sequences {sn}.

There is a considerable literature on designing binary sequences with “good” correlation properties that

satisfy (5), see, e.g., [7] and [8] for recent reviews of this literature. Nevertheless, there is no known binary

sequence for which the ratio in (5) takes on satisfactorily small values; indeed, for such sequences the smallest

known squared value of the said ratio corresponds to a Barker sequence of length N = 13 and it is given by

1/(14.083)2 = −22.974 dB – such a value would be unacceptably high for many practical applications.

The so-called mismatched filtering (MMF) is a pulse compression approach whose interference (clutter)

cancelation performance can be better than that of MF by several orders of magnitude. The rich literature on

MMF, of which the references [1]–[4], [9]–[20] of this paper form a representative sample, is briefly discussed

in the next section, which also states the problems to be dealt with in the paper.

II. PROBLEM FORMULATION AND OUTLOOK

The radar system is assumed to use the same modulating sequence as before, {sn}, but now the received

data vector used to estimate the RCS’s in a one-by-one fashion has length 2M + N instead of just N as

in (1), with the integer M being a design parameter. Let {yn}2M+N
n=1 denote the window of the received data

sequence that is temporally aligned with the return from the range bin of current interest. Then, under the usual

assumption that the pulse repetition interval (PRI) is large enough such that any return due to the previous

transmitted pulse arrives at the receiver before the returns due to the current pulse, we can write the model for
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the aforementioned data window in the following form:
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where 0M denotes an M × 1 all-zero vector. Let

Jn =




n+1︷ ︸︸ ︷
1 0

. . .

1

0




= JT
−n, n = 1, · · · ,M + N − 1 (7)

denote the (2M + N)× (2M + N) shift matrix, and let

s =
[

0T
M s1 · · · sN 0T

M

]T

, (8)

where (·)T denotes the transpose. Using this notation, we can write (6) in a more compact manner:

y = α0s +
M+N−1∑

k=−M−N+1,k 6=0

αkJks + ε, (9)

where the vectors y and ε are defined in an obvious way. In this paper, we assume that the noise sequence is

white so that

E{εε∗} = σ2I, (10)

where E{·} denotes the expectation operator. The model equation above is written in a general form that will

be used in this paper mostly to motivate the performance metrics employed for code sequence and receiver

filter designs. In some cases, Equation (9) could be written in a simplified form; for instance, for the range
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bins near (or far away from) the radar system, α1, α2, etc. (α−1, α−2, etc.) might be known to be equal to

zero. However, for operational simplicity, we will consider the same designed receiver filter and, of course,

code sequence for all range bins in the area illuminated by the radar system, and consequently we will use the

general model in (9) for all these range bins.

Remark: In (8), the same numbers of zeros precede and, respectively, succeed the code sequence {sn}.

While there is no strong rationale for this “symmetry” of (8), we use it to simplify the discussion. Note that if

the said numbers were different, then we would have two design parameters instead of one (i.e., M ), and this

fact would complicate the notation and the design procedure without offering any guarantee for a consistently

better performance. 2

There is an immediately apparent advantage of the extended model in (6) over that in (1). For (1), the ratio

between the number of unknowns and the number of observations is given by:

2N − 1

N
, (11)

which is approximately equal to 2 for reasonably large values of N . On the other hand, the same ratio for (6)

is equal to:
2M + 2N − 1

2M + N
, (12)

which is close to 1 for M À N . This simple observation lends some (preliminary) support to the fact that we

should indeed prefer (6) over (1).

In order to have M À N , we should in principle keep N relatively small (otherwise choosing M À N

might not be possible, as 2M + N should in general be only a fraction of the PRI). On the one hand, using a

relatively small value of N is an advantage because it allows us to solve the problem of designing {sn}N
n=1 more

easily (the computational complexity of this problem increases exponentially with N ). On the other hand, short

code sequences may be more easily identified and thus their use may increase the probability of intercept –

unless we will avoid using standard sequences (such as Barker codes), which is what we recommend to do (see

the above comment on designing {sn}N
n=1, and the next sections) whenever the probability of intercept is an

important parameter. Note also that “too short” code sequences may have poor RCS (and Doppler) estimation

capabilities.

The following discussion provides further arguments in the favor of (6). If there were no interference terms

in (6) (i.e., αk = 0 for any k 6= 0), then the MF estimate of α0 would have excellent statistical properties;
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note that the MF estimates of α0 obtained from (1) and from (6) are identical. However, the no-interference

condition mentioned above is never satisfied in practice. Consequently, in an attempt to obviate the need for this

condition, we will consider a more general method for estimating α0, which we call the instrumental variable

(IV) method and which includes the MF method as a special case. The IV estimate of α0 is given by:

α̂0 =
x∗y
x∗s

, (13)

where x is a (2M + N)× 1 vector of “instrumental variables” (clearly, (13) reduces to the MF-estimate of α0

for x = s). We will comment on the terminology used (IV etc.) shortly. However, before doing so, we make a

number of remarks on (13), the corresponding MF estimate, and the advantage of using (6) with (13), in lieu

of using (1).

Evidently, (13) is more complex computationally than the MF estimate of α0: in particular, while the latter

estimate does not require any multiplication (in the case of binary {sn}), the IV estimate needs (2M + N)

multiplies. However, most modern radar processors are powerful enough to handle (13) easily, and hence the

higher computational requirement of (13) cannot be considered to be a serious drawback. As a matter of fact,

the higher computational complexity of (13) is completely offset by the statistical performance advantage of

(13) over the MF estimate. To realize the said advantage, the reader is reminded that the MF estimate of α0 is

not significantly affected by the interference terms in (1) or (6) only if the condition (5) is satisfied. Finding

a sequence {sn} that satisfies this condition is evidently difficult, as {sn} are constrained to be binary. On the

other hand, for the IV estimate the similar condition is that x is nearly orthogonal to the vectors in (1) or (6)

that multiply αk for any k 6= 0 (see below for details). Because the elements of x are not constrained in any

way, satisfying this condition should be an easier task. Moreover, the number of degrees of freedom that can

be used for realizing this task increases as M increases, an observation that provides further support to the fact

that the extended model in (6) is preferable to (1).

The use of the IV estimate in pulse compression radar systems was apparently suggested several decades

ago, see, e.g., [1]–[3], [15], [16], [18]–[20] and the references therein, under the name of mismatched filtering

(MMF). In our opinion, the MMF terminology, used in the cited works, is not entirely appropriate: first, the

name of MMF has a negative connotation, which might suggest that this filter is somehow incorrect or at least

worse than the MF (whereas the opposite is in general true); second, and perhaps more important, the optimal

IV vector x is quite tied/matched to s, even though not equal to s (see the next section), and thus it does not

seem right to call it “mismatched.” For these reasons, we will use the name of IV to designate the approach
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based on (13) and the quantities involved. The motivation for this name comes from the fact that the elements

of the IV vector x, unlike those of s, do not necessarily have a “physical meaning”: they are just “instruments”

that help us achieve the goal of estimating {αk} accurately (see [21] and the references there for more details

on this aspect).

Our main problem in this paper is to choose the user’s parameters x, M , and s in such a way that

the estimation errors in α̂0 are minimized. We will consider only data-independent designs for these user’s

parameters, based on the following metrics:

• Integrated sidelobe level (ISL):

ISL =

∑M+N−1
k=−M−N+1,k 6=0 |x∗Jks|2

|x∗s|2 . (14)

• Peak sidelobe level (PSL):

PSL = max
k

|x∗Jks|2
|x∗s|2 , for k = −M −N + 1, · · · ,−1, 1, · · · ,M + N − 1. (15)

• Inverse signal-to-noise ratio (ISNR):

ISNR =
‖x‖2

|x∗s|2 . (16)

where ‖·‖ denotes the Euclidean norm.

Note that we have formulated these metrics for complex-valued variables, for the sake of generality. However,

when s is real-valued (as assumed in some parts of this paper), then x should also be chosen to be real-valued.

Our goal is to select the design variables x, M , and s so that the above metrics are minimized, or at least so

that they take on some specified values. In this way, we guarantee that α̂0 in (13) is an accurate estimate of

α0. To see why this is so, insert (9) in (13) to obtain:

α̂0 − α0 =
M+N−1∑

k=−M−N+1,k 6=0

αk

[
x∗Jks

x∗s

]
+

x∗ε
x∗s

. (17)

Under the white-noise assumption made in this paper, the variance of the noise-dependent term in (17) is equal

to σ2ISNR, where σ2 is the noise variance. It follows from this observation and from (17) that, when the

values of {αk}k 6=0 and σ2 are unknown, the minimization of the data-independent metrics introduced above is

a natural way of “minimizing” the estimation error in α̂0.
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Remark: If information on {αk}k 6=0 and σ2 were available, for example in the form of previously obtained

estimates {α̂k}k 6=0 and σ̂2, we would then omit the PSL metric and would combine the ISL and ISNR metrics

into a single criterion: ∑M+N−1
k=−M−N+1,k 6=0 |α̂k|2 |x∗Jks|2 + σ̂2 ‖x‖2

|x∗s|2 , (18)

which should be minimized with respect to the design variables. Note that (18) is an estimate of the variance

of α̂0, see (17), under the mild assumption that the returns from different range bins are uncorrelated with one

another.

Designs obtained by minimizing (18), or similar criteria, have been considered in the literature, see, e.g.,

[4], [14], [22]–[24] . We will not consider them in this paper because their computational requirements appear

to be well beyond the capabilities of many of the current radar systems. Indeed, while the design obtained

by minimizing a data-dependent metric (such as (18)) is not much more complicated to compute than the

design derived from a data-independent metric (such as (14) - (16)), the computation of the former has to be

done on-line whereas that of the latter can be done off-line (and thus it does not have to meet any hard time

constraints). Note that the off-line computation of a data-independent design will produce a code sequence {sn}
to be transmitted along with an IV filter vector x (including its dimension) to be used at the radar receiver,

which should be good choices for a whole set of possible scenarios. A data-dependent design, on the other

hand, is very much dependent on the assumed scenario and as such it can be rendered completely ineffective

by small errors in the assumptions made (such as the errors caused by an unknown Doppler shift that makes

the vector multiplying α0 in (6) be different from the assumed s) [25], [26]. 2

Minimum PSL designs have been considered in [16] and [9] - [12]. In the real-valued case, the optimal

PSL filter can be obtained by solving a linear program (LP) – see, e.g., [16], [21] and the Appendix A2.

Alternatively, the minimum-PSL filter can be computed using an iterative algorithm proposed in [11], [12].

The latter algorithm, unlike the LP formulation, can also be used in the complex-valued data case, but its

convergence properties are unknown in both cases. In the Appendix A, we explain in passing how to compute

the minimum-PSL filter efficiently in both the real-valued case and the complex-valued one.

In this paper, we will focus on the use of the other two metrics in (14) and (16), viz. ISL and ISNR, and

therefore we omit any further discussion on the minimum-PSL design. We do so for the sake of conciseness.

Additionally, in many cases of practical interest, a well-specified minimum-ISL design can provide more

2The original LP formulation in [16] is somewhat different from the LP formulation in [21] and in the Appendix A.
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accurate estimates of α0 than can a minimum-PSL design. This is evidently so in uniformly distributed clutter

scenarios. However, this may also be true even in scenarios with a few strong scatterers. Indeed, for the values

of M and N often encountered in applications, the sidelobe profile {|x∗Jks|2 / |x∗s|2} of a minimum-PSL filter

is usually rather flat (see, e.g., [16] for a simple explanation as to why this is so). Therefore, while the PSL

of such profile is by definition smaller than the PSL of the corresponding minimum-ISL filter, many sidelobes

of the minimum-PSL filter will be higher than the corresponding sidelobes of the minimum-ISL design. The

consequence is that the PSL design will give more accurate estimates of α0 only in the worst-case scenario

(that is to say, the case in which the strong scatterers happen to be in the range bins corresponding to the

peak sidelobe levels). In the remaining cases, the ISL design is more likely to provide better estimation and

detection performance.

Minimum-ISL designs have been considered in [2], [3], [15], [22]–[24] and more recently in [4], [9], [10]. The

focus of this tutorial paper is on this type of design, with the main goal to clarify the design problems, highlight

the design issues, and point out performance differences among the various possible designs. Compared with

most of the previous works, our approach here appears to be both simpler and more complete as well as more

logically structured. The principal features of this approach can be summarized as follows:

• The formulation of the design problem involves both ISL and ISNR, as also done in [1], [18].

• An efficient algorithm is presented for solving the joint ISL-ISNR design problem, see also [1], [18].

• Some theoretical properties of the minimum-ISL filter design are reviewed, following [2], [3].

• The design of the code sequence to minimize various performance metrics is also considered, (see, e.g.,

[5], [7], [8], [22]–[24], [27]–[33] for previous representative works on this aspect).

• Finally, the paper explains how to modify the ISL and ISNR metrics in the case in which the Doppler

shift is no longer negligible, and also how to compute the corresponding optimal designs in such a case,

similarly to what has been done, for example, in [6], [19], [20], [23], [24], [27], [28], [33], [34].

III. OPTIMAL DESIGNS IN THE NEGLIGIBLE DOPPLER CASE

We can formulate the design problem either as the minimization of ISL under a constraint on ISNR or as the

minimization of ISNR under a constraint on ISL. Here we will concentrate on the second possible formulation

because it appears that in practical applications the desired ISL is more easily specified than the desired ISNR

(for instance, a value of -50 dB for ISL/[2(M +N)] should be satisfactory for most applications). Nevertheless,
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we should stress that the discussion and methods presented in what follows for the second formulation apply

with only minor modifications to the aforementioned first formulation as well. Note that below we begin the

discussion with an analysis of the problem of minimizing the ISL (without any ISNR constraint), as the results

of this analysis are of interest by themselves and they will also turn out to be useful to our study of the design

problem of minimizing the ISNR under an upper-bound constraint on ISL.

A. Minimum-ISL Design

The design problem considered in this section consists of minimizing the ISL with respect to x (for fixed

s):

min
x

∑M+N−1
k=−M−N+1,k 6=0 |x∗Jks|2

|x∗s|2 . (19)

Let

R =
M+N−1∑

k=−M−N+1,k 6=0

Jkss
∗J∗k. (20)

Using this notation, we can rewrite (19) in a more compact form:

min
x

x∗Rx

|x∗s|2 . (21)

The matrix R can be shown to be strictly positive definite (see Appendix B). Let R1/2 (R−1/2) denote a

Hermitian square root of R (of R−1). Then, by the Cauchy-Schwartz inequality, we have that:

|x∗s|2 =
∣∣x∗R1/2R−1/2s

∣∣2 ≤ (x∗Rx)(s∗R−1s). (22)

This observation implies that:

ISL =
x∗Rx

|x∗s|2 ≥
1

s∗R−1s
, (23)

where the lower bound is achieved for:

xo = R−1s (or a scaled version thereof), (24)

The minimum value of ISL corresponding to (24) is given by (see (23)):

ISLo =
1

s∗R−1s
. (25)

Remark: Because the vectors that minimize (21) and the following function:
∑M+N−1

k=−M−N+1 |x∗Jks|2
|x∗s|2 = ISL + 1, (26)
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are identical, we can redefine the matrix R as

R =
M+N−1∑

k=−M−N+1

Jkss
∗J∗k, (27)

and the above results still apply. 2

The following important property of the minimum-ISL design was proved in [2], [3] and Appendix C: ISLo

decreases monotonically as M increases. Among other things, this property will help us choose the value of

M for the design discussed next.

Remark: In lieu of using an IV vector, as in (13), we might think of making use of an IV matrix, let us

say X of dimension (2M + N)× M̃ , where M̃ ≤ 2M + N . Presumably, the additional degrees of freedom of

X will allow us to obtain improved performance (e.g., a smaller ISL). However, this presumption turns out to

be untrue as shown in Appendix D. 2

B. Minimum ISNR - Constrained ISL Design

First we specify the values of N and of the desired ISL, which we denote by η. As is well-known, the MF

receiver has the smallest ISNR value in the class of IV receivers considered in this paper, namely ISNRMF =

1/‖s‖2, which is equal to 1/N for binary sequences. We can choose N so that ISNRMF takes on a reasonably

small value; while this value depends on the application, an ISNRMF equal to -10 dB or smaller appears

satisfactory for many cases. Note that, whenever the Doppler shifts are not negligible any longer, the choice of

N should also take into account the desired accuracy of Doppler estimation, see the next section for details.

Regarding η, we can, for instance, choose this parameter such that η/[2(M +N)] is around -50 dB (as already

mentioned above) – more details on the choice of η will be given shortly.

Next, for the selected value of N and for a “good” code sequence {sn} (for instance the sequence that

minimizes the ISLo in (25)), we compute ISLo for increasing values of M until we reach a value ISLo < η.

Depending on the value of η and on the practical constraints on M , we may want to choose an M for which

ISLo is quite a bit smaller than η, if possible (recall that ISLo decreases continuously as M increases).

Finally, given the values of N , η, and M chosen as outlined above, and for all 2N possible binary sequences

{sn} (assuming that we also want to optimize the code sequence; otherwise {sn} is given by the sequence

used to select M ), we solve the following constrained minimization problem:

min
x

ISNR s.t. ISL ≤ η. (28)
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The sequence s that gives the minimum value of ISNR, let us say so, and the corresponding solution to (28),

let us say xo, are chosen as the optimal code sequence and optimal IV filter.

To solve (28), we first remind the reader that a scaling of x does not change either ISNR or ISL. Consequently,

there is no restriction to assume that

x∗s = ‖s‖2 (29)

(which is the value of x∗s corresponding to the MF). Under (29), we can reformulate the IV filter design in

(28) as follows:

min
x

‖x‖2 (30)

s.t. x∗s = ‖s‖2 (31)

x∗Rx ≤ η‖s‖4. (32)

This is a convex optimization problem that can be efficiently solved by using the Lagrange multiplier method-

ology (see, e.g., [25]). To make use of the solver presented in the cited paper, we rewrite (30) - (32) as:

min
w

w∗R−1w (33)

s.t. w∗
(

R−1/2s

‖s‖2

)
= 1 (34)

‖w‖2 ≤ η‖s‖4, (35)

where w = R1/2x. It follows from [25] that the solution to (33) - (35) can be computed as follows. Let

wo(λ) =
(R−1 + λI)

−1
R−1/2s

s∗R−1/2 (R−1 + λI)−1 R−1/2s
‖s‖2

=
R1/2 (I + λR)−1 s

s∗ (I + λR)−1 s
‖s‖2 4

= R1/2xo(λ), (36)

where λ > 0 is a Lagrange multiplier, and

xo(λ) =
(I + λR)−1 s

s∗ (I + λR)−1 s
‖s‖2. (37)

First, consider the case in which wo(0) satisfies (see the inequality constraint in (35)):

η >
s∗Rs

‖s‖4

4
= ηMF. (38)

Then wo(0) is the solution to (33) - (35), and therefore xo(0) = s is the solution to (30) - (32). In such a case,

the inequality constraint in (35) is inactive.
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Next let us assume that (38) does not hold, i.e.,

η ≤ s∗Rs

‖s‖4
. (39)

In most applications, this is the case of interest – indeed, the ISL of the MF solution (x = s), which is evidently

equal to ηMF, is considered to be too large in many practical situations, and therefore it is quite unlikely that

one would choose η as in (38). Now, with reference to (39), η cannot be chosen much smaller than the upper

limit in (39) because the problem in (30) - (32) will then become infeasible. To address this concern, we note

that the minimum value of x∗Rx/‖s‖4, subject to x∗s = ‖s‖2, is equal to 1/(s∗R−1s). It follows from this

observation that the constrained optimization problem in (30) - (32) is feasible if and only if

η ≥ 1

s∗R−1s

4
= ηIV. (40)

For any value of η ∈ [ηIV, ηMF] (evidently, ηIV ≤ ηMF), it follows from [25] that the solution to (30) - (32) is

given by xo(λo), where λo is obtained by solving the secular equation ‖wo(λ)‖2 = η‖s‖4, or in a more explicit

form:
s∗ (I + λR)−1 R (I + λR)−1 s[

s∗ (I + λR)−1 s
]2 = η. (41)

It is also shown in the cited paper that Equation (41) has a unique solution λo > 0, and furthermore that the

left-hand side of (41) is a monotonically decreasing function of λ > 0. Using these observations, the solution

of (41) can be efficiently computed.

To conclude this section, we remind the reader that the user’s parameter η is pre-specified. Therefore, during

the process of combinatorial search for the optimal code sequence, it may happen that the value of ηIV associated

with some sequences is larger than η. Such sequences can be directly discarded as the constrained optimization

problem in (30) - (32) is evidently infeasible for them.

IV. OPTIMAL DESIGNS IN THE NON-NEGLIGIBLE DOPPLER CASE

When some of the targets illuminated by the radar are moving rapidly with unknown velocities and directions,

then their Doppler shifts (assumed to be significant, see below for details) must be taken into account in the data

model and the ensuing analysis. Specifically, let {ωk}M+N−1
k=−M−N+1 be the Doppler shifts (expressed in radians

per second) associated with the range bins under consideration and let

s(ω) =
[

0T
M s1e

jω · · · sNejNω 0T
M

]T

(42)
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denote a generic Doppler shifted zero-padded code sequence vector (note that s(ω) is complex-valued even

when s is real-valued). Then the data model in (9) should be modified as below whenever the Doppler shifts

are not negligible:

y = α0s(ω0) +
M+N−1∑

k=−M−N+1,k 6=0

αkJks(ωk) + ε. (43)

The ISL and ISNR metrics associated with (43) are given by the following equations:

ISLD =
M+N−1∑

k=−M−N+1,k 6=0

|x∗(ω0)Jks(ωk)|2
|x∗(ω0)s(ω0)|2

, (44)

and, respectively,

ISNRD =
‖x(ω0)‖2

|x∗(ω0)s(ω0)|2
, (45)

where the IV vector depends now on ω0 (as well as, potentially, on {ωk}; however the dependence on {ωk}
will be eliminated later on, see e.g. (50) below).

Let

Ω = [ωa, ωb]; ωb > ωa (46)

denote a given interval of possible values of ω0 and {ωk} (the set Ω can be obtained as described, e.g.,

in [4]). Consider the vectors s(ωa) and s(ωb) corresponding to the extreme points of Ω. The submatrix of[
s(ωa) s(ωb)

]
that comprises the elements which are different from zero can be written as:




s1 0
. . .

0 sN







ejωa ejωb

...
...

ejNωa ejNωb


 . (47)

It follows from this observation along with well-known properties of the Vandermonde matrices of the form in

(47) that the effective rank of the matrix
[

s(ωa) s(ωb)
]

is two only if the difference (ωb − ωa) is not much

smaller than 2π/N , let us say:

(ωb − ωa) ≥ ∆ω, (48)

where ∆ω is on the order of π/(10N). This discussion suggests that the Doppler shifts can be considered to

be non-negligible whenever the length of the interval Ω, to which they belong, satisfies (48). Let us assume

that the following grid

{0,±∆ω,±2∆ω, · · · } (49)
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covers Ω; and let L denote the number of points in (49). In a part of the discussion that follows, we will let

ω0 take on the values in the set (49).

Because we do not assume any knowledge about the Doppler shifts {ωk}, other than that they belong to Ω,

the ISL metric in (44) cannot be evaluated as it stands. A natural way of circumventing this problem consists

of replacing the said metric with the following averaged version of it, over the interval Ω,

ISLD =
M+N−1∑

k=−M−N+1,k 6=0

(
1

ωb − ωa

) ∫
Ω
|x∗(ω0)Jks(ω)|2 dω

|x∗(ω0)s(ω0)|2
. (50)

Remark: Similarly to the comments that we made on (18), we note here that if a priori information on the

range-Doppler profile were available in a sufficiently precise form, then we could replace (50) by a weighted

version that takes into account the expected strengths of the various terms in this equation. The weighted metric

can be dealt with in exactly the same manner as the unweighted one in (50) (see below), with only a minor

complication of notation. 2

Let

Γ =
1

ωb − ωa

∫

Ω

s(ω)s∗(ω)dω. (51)

A simple calculation shows that the elements of Γ are either equal to zero or they have the following generic

expression:

sks
∗
p

(ωb − ωa)

∫

Ω

ej(k−p)ωdω =





|sk|2, for k = p,
sks∗p

j(k−p)(ωb−ωa)

[
ej(k−p)ωb − ej(k−p)ωa

]
, for k 6= p.

(52)

It follows that:

ISLD =
x∗(ω0)RDx(ω0)

|x∗(ω0)s(ω0)|2
, (53)

where

RD =
M+N−1∑

k=−M−N+1,k 6=0

JkΓJ∗k. (54)

For a given ω0, the ISL and ISNR metrics above have the same form as the corresponding metrics used in the

negligible-Doppler case, with the only minor difference that R in (21) is replaced by RD in (53). Consequently,

both the minimum-ISLD design and the minimum ISNRD-constrained ISLD design can be efficiently obtained

using the methods described in the previous section.
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The minimum value of ISLD with respect to x(ω0), viz.

ISLo
D(ω0) =

1

s∗(ω0)R
−1
D s(ω0)

(55)

decreases with increasing M , as it does in the negligible-Doppler case. This property can be proved as in

Appendix C, once we established the fact that the matrices RD, corresponding to a series of increasing values

of M , form a nested sequence (similarly to R). To realize the said fact, observe that Γ can be written as

Γ =
P∑

p=1

γpγ
∗
p (56)

for some integer P (which can be chosen as the rank of Γ) and for some vectors {γp} that have the same

zero-padded form as s. Consequently, RD can be written as a sum of P matrices, each of which has a similar

definition to that of R in (27). The nested structure of RD, then, follows from this observation and the nested

structure of the matrices of the form of R.

Remark: Note that the larger the Doppler uncertainty interval Ω, the larger is the rank of Γ (see, e.g.,

[26]). Consequently, the minimum eigenvalue of RD may be much larger than that of R, which means that the

minimum achievable value of ISLD may be much larger than that of ISL. Intuitively, this is due to the fact that

the designs based on ISLD are somewhat conservative, as they try to optimize the ISL metric averaged over the

entire set Ω; yet there is hardly anything else we could do when the Doppler profile of the scene is completely

unknown. 2

Next we note that, because ω0 is not known, we shall compute the desired design for all L values of

ω0 in the set (49). The so-obtained IV filter vectors x(ω0) or quantities related to them (see below), for

ω0 = 0,±∆ω,±2∆ω, · · · , which can be pre-computed, will be used at the receiver to estimate both α0 and

ω0. Specifically, α0 is estimated using basically the same formula as in the previous section (see (13)):

α̂0 =
x∗(ω̂0)y

x∗(ω̂0)s(ω̂0)
=

s∗(ω̂0)R̃
−1
D y

s∗(ω̂0)R̃
−1
D s(ω̂0)

, (57)

where R̃D = RD for the minimum-ISLD design, and R̃D = I + λRD for the minimum ISNRD-constrained ISLD

design. Furthermore, the estimate ω̂0 of ω0 in (57) is given by the solution to the following maximization

problem:

max
ω0∈{0,±∆ω,±2∆ω,··· }

∣∣∣s∗(ω0)R̃
−1
D y

∣∣∣
2

s∗(ω0)R̃
−1
D s(ω0)

. (58)
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To motivate (58), note that R̃D can be interpreted as a guess of a scaled version of the covariance matrix

of the clutter and noise in the minimum ISNRD-constrained ISLD design case, or only of the clutter covariance

matrix in the minimum-ISLD design case (note also that in the case of the former design, R̃D may depend on

ω0 via λ(ω0); however, the dependence of λ(ω0) on ω0 is expected to be fairly weak in general and is therefore

omitted in what follows). With this fact in mind, consider the following weighted least-squares fitting criterion:
∥∥∥R̃

−1/2
D [y − α0s(ω0)]

∥∥∥
2

. (59)

The minimization of (59) with respect to α0, for fixed ω0, evidently gives the optimal IV estimate in (57).

Insertion of (57) (with ω̂0 replaced by ω0) into (59) yields the function:
∥∥∥∥R̃

−1/2
D y − R̃

−1/2
D s(ω0)s∗(ω0)R̃−1

D y

s∗(ω0)R̃−1
D s(ω0)

∥∥∥∥
2

=

∥∥∥∥
[
I− R̃

−1/2
D s(ω0)s∗(ω0)R̃

−1/2
D

s∗(ω0)R̃−1
D s(ω0)

]
R̃
−1/2
D y

∥∥∥∥
2

= y∗R̃−1/2
D

[
I− R̃

−1/2
D s(ω0)s∗(ω0)R̃

−1/2
D

s∗(ω0)R̃−1
D s(ω0)

]
R̃
−1/2
D y. (60)

The estimate ω̂0 of the Doppler shift for the range bin of current interest is obtained by minimizing (60) with

respect to ω0, or equivalently by solving the maximization problem in (58).

V. NUMERICAL CASE STUDIES AND CONCLUDING REMARKS

We discuss first a negligible-Doppler case and then a case in which the Doppler shift can no longer be

neglected. In the numerical studies of this section we focus on the use of binary sequences {sn}N
n=1.

A. Negligible-Doppler Case

We consider the MF design and the following two minimum-ISL designs (for given values of N and M ):

• x1 = s1, where s1 is the zero-padded binary sequence that minimizes

the ISL of MF: s1 = arg min
s

s∗Rs, (61)

• x2 = R−1s1, (62)

• x3 = R−1s2, where s2 is the zero-padded binary sequence that minimizes

the ISL of IV: s2 = arg max
s

s∗R−1s. (63)
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We also consider two minimum ISNR-constrained ISL designs (once again, for given values of N and M ):

• x4 = the solution to the design problem in (28) for s = s2

and η = ISL(x3) + 35 dB for N = 16 and η = ISL(x3) + 25 dB for N = 21, (64)

• x5 = defined similarly to x4, but with s equal to the zero-padded binary sequence

that gives the smallest value of ISNR among all vectors of s for which x4 exists. (65)

The ISL, PSL, and ISNR metrics, as functions of M , corresponding to the above five designs are shown in

Figure 1 for both N = 16 and N = 21. The results presented in the figure allow us to make a number of

relevant observations on the behavior of the designs under consideration:

(i) As M increases, the ISL and PSL metrics associated with the IV designs x2 and x3 take on much

smaller values than the values corresponding to the MF design x1, at the cost of a relatively minor

loss in ISNR. As an example, ISL(x3) for N = 16 and M = 80 is smaller than ISL(x1) by some 100

dB, whereas the ISNR loss of x3 compared with x1 is only 1.70 dB.

(ii) The ISL and PSL performance of x3 is much better than that of x2, which shows the importance of

designing the probing sequence {sn} in addition to designing the receive filter x; indeed, for example,

at N = 16 and M = 80, the ISL of x3 is smaller than the ISL of x2 by 66.36 dB. The ISNR of x3

is larger than that of x2 by approximately 1.15 dB for N = 21; but for N = 16 the ISNR of x3 is

smaller than the ISNR of x2 for M ≥ 40 – consequently, in the case of N = 16 and for M ≥ 40, x3

outperforms x2 with respect to all three metrics (ISL, PSL, and ISNR).

The sequence s2 employed by x3 evidently changes as N changes, but it can also vary with M . The

sequences s2 for N = 16 and N = 21, and for M = 0, 20, 40, 60 and 80 are given in Table I

(omitting the zero-padded segments). Note that the solution to the design problem that leads to s2 is

not necessarily unique, which explains why several sequences s2 occur in Table I for some pairs (N ,

M ).

(iii) The differences in the ISL and PSL performances of x1, x2, and x3, for a given value of M , decrease

as N increases. In fact the said differences appear to depend mainly on the ratio M/N – the larger

this ratio, the larger the differences between the performances of the three designs. To illustrate this

dependence of ISL (and PSL) on the ratio M/N , we note that the ISL of x2 with s equal to a zero-

padded extended Legendre sequence [35] of length N = 300 is equal to about -40 dB at M = 1500,
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therefore for M/N = 5; and that a similar ISL value around -40 dB is attained by x2 for N = 16

and M = 80 (see Figure 1), therefore also for M/N = 5.

The main implication of the above observation is that in general we should choose a “small” value

for N rather than a “large” one. Of course, the smallest value of N that we can choose is dictated

by the desired ISNR. If we will significantly increase N beyond that value, then we will decrease the

ISNR, but the values of ISL and PSL might become too large for any practically feasible value of M ,

and the computation of the designs x3 and x5 (which are based on optimizing the probing sequence)

may well become intractable.

(iv) The designs x4 and x5 have been computed only for M ≥ 60 because their associated ISL (which

is equal to ISL(x3) + 35 dB for N = 16 and to ISL(x3) + 25 dB for N = 21, as explained above)

was considered to be “too large” for smaller values of M (see Figure 1). In the case of N = 16,

the difference between these two designs is relatively small for all three metrics (note that x4 and

x5 have the same ISL values, by design). For the said value of N , the imposed ISL loss of 35 dB,

compared with x3, results in an ISNR gain of 0.65 dB for x5– hence reducing the ISNR loss compared

with MF to 1.03 dB. For N = 21, on the other hand, x5 has a significantly smaller ISNR than x4

– indeed, in this case the ISNR gain of x5 over x4 is approximately 1.30 dB. Interestingly, we have

here another instance of a design that can outperform another one in terms of all three metrics (see

also the discussion in point (ii) above): in effect x5 is better than x2 with respect to both ISL and

PSL as well as ISNR.

The sequences s3 used in x5, for N = 16 and N = 21 and for M = 60 and M = 80, are presented

in Table II (omitting the zero-padded segments).

The above remarks and observations suggest the following recommendations. In a scenario in which the ISL

and PSL are the key features, ISNR being less important, we can think of using x3 with a relatively small value

of N and with an M several times larger than N . On the other hand, if ISNR is deemed to be an important

feature, we can use x5 to tradeoff an ISL and PSL loss for an ISNR gain, possibly with a larger value of N

than that recommendable for the previous scenario.
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B. Non-Negligible Doppler Case

Let

∆ω = Φ
( π

180◦

) (
1

N

)
(66)

and consider the Doppler shift set in (46) with ωa = −∆ω and ωb = ∆ω, i.e.,

Ω = [−∆ω, ∆ω] . (67)

It follows from (66) and (67) that Φ is the maximum considered Doppler shift (in degrees) over the length of

the code sequence. In most of the examples that follow we will let Φ = 5◦. This value is analogous to the

Doppler shift of a target with an approximate velocity of Mach 2 illuminated by a 1 µs pulse from an S-band

radar (see, e.g., [36]).

We consider the following minimum-ISLD designs, in addition to the MF design:

• x1(ω0) = s1(ω0), where s1 is given by (61), (68)

• x6(ω0) = R−1
D s1(ω0), (69)

• x7(ω0) = R−1
D s4(ω0), where s4 is the zero-padded binary sequence that gives

the smallest value of ISL◦D(ω0) averaged over the set {0,±∆ω}, i.e.
∑

ω0∈{0,±∆ω}
ISL◦D(ω0). (70)

We also consider the following two minimum ISNRD-constrained ISLD designs:

• x8(ω0) = the solution to the minimum ISNRD-constrained ISLD problem

with s = s4 (the sequence used by x7(ω0)) and η = ISLD(x6(ω0)) , (71)

• x9(ω0) = defined similarly to x8(ω0) but with s = s5 – the zero-padded binary sequence

that gives the smallest value of ISNRD(ω0) averaged over the set {0,±∆ω}, or equivalently,

the smallest value of the following averaged norm:
∑

ω0∈{0,±∆ω}
||x8(ω0)||2. (72)

Several performance metrics (see below for details), associated with the above designs, have been computed

for ω0 = 0, ω0 = ∆ω and ω0 = −∆ω. For all designs, the performance metrics have been observed to be quite

insensitive to the value taken by ω0. This was somewhat expected: as mentioned in the remark that follows
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Equation (56), the performance of the considered designs is expected to degrade quite a bit as the size of the

uncertainty Doppler shift set increases, but the dependence on ω0 will typically be much weaker. With this fact

in mind, and also in an attempt to keep the number of plots included under control, we will show the results

obtained only for ω0 = 0 (the results corresponding to ω0 = ∆ω and ω0 = −∆ω were almost indistinguishable

from those for ω0 = 0, in most cases).

Figures 2 and 3 show the ISLD and ISNRD metrics, respectively, associated with the designs x1, x6, x7, x8

and x9, as functions of M , for Φ = 1◦, 5◦, 10◦ and 15◦, and for both N = 16 and N = 21.

Tables III and IV give the optimal sequences s4 and s5, used by x7/x8 and x9, for several values of M and

for Φ = 5◦.

For the next numerical illustrations we set M = 60 and Φ = 5◦. Figure 4 shows the sidelobe profiles

SL(k, ω) =
|x∗(ω0)Jks(ω)|2
|x∗(ω0)s(ω0)|2

(73)

as functions of k and ω (the so-called cross-ambiguity functions), associated with the designs under consider-

ation, for both N = 16 and N = 21.

We also show in Figure 5 the corresponding ISL and PSL metrics, as functions of ω, namely

ISL(ω) =
M+N−1∑

k=−M−N+1,k 6=0

SL(k, ω), (74)

and

PSL(ω) = max
k 6=0

SL(k, ω). (75)

The following observations can be made based on the results shown in the figures:

(i) Much as in the negligible-Doppler case, the ISLD gains of x6 and especially of x7 over x1 become

significant as M increases, at the cost of a relatively minor ISNRD loss for N = 16 and a mild one

for N = 21. The design x9 can be used to eliminate part of the said ISNRD loss, and still achieve the

same ISLD as x6.

(ii) While the ISNRD values in the figures are in most cases similar to those encountered in the negligible-

Doppler case (with the exception of x7 for which the ISNRD values are larger than the corresponding

ISNR ones), the ISLD values associated with the IV designs are much larger. Moreover, the larger the

value of Φ, the faster the convergence of ISLD to a constant as M increases. An implication of the
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latter fact is that in the non-negligible-Doppler case we should choose a (much) smaller value of M

than in the negligible-Doppler case.

(iii) We can see from Figures 4 and 5 that, as expected, the ISL and PSL performances of the designs

degrade as the magnitude of the Doppler shift takes on larger values. This degradation is more signifi-

cant for the design x7 than for the other designs for which the performance degrades quite gracefully.

Despite the said performance degradation, the IV designs still offer much better performance than

that of the MF design, for the range of Doppler shifts considered here.

(iv) The designs x7 and x9, which use optimal sequences {sn}, perform better than the corresponding

designs x6 and x8, respectively, which use non-optimal sequences.

Similarly to the conclusion presented at the end of the previous sub-section, we therefore recommend the

use of x7 or x9, depending on whether the ISL or the ISNR (respectively) is the metric of most interest. The

design x6 was also found to be quite competitive in our numerical studies, and it may be the recommended

design particularly in those cases in which the chosen value of N is too large for the computation of x7 or x9

to be feasible.

APPENDIX A. COMPUTATION OF THE MINIMUM-PSL FILTER

Following the approach of [21], we write the vector x as:

x = s + Uz, (76)

where the (2M + N)× (2M + N − 1) matrix U comprises a unitary basis of the null space of s∗, that is to

say U∗s = 0 and U∗U = I (note that the PSL metric, similar to the ISL and ISNR metrics, is invariant to the

scaling of x and therefore we can choose the coefficient multiplying s in the decomposition in (76) to be 1).

Using (76) in Equation (15) for PSL we get the following cost function:

|s∗Jks + z∗U∗Jks|2
‖s‖4

. (77)

Consequently the minimum-PSL filter vector is given by the solution to the problem:

min
x,γ

γ (78)

s.t. |s∗J∗ks + s∗J∗kUz|2 ≤ γ‖s‖4, (79)

for k = −M −N + 1, · · · ,−1, 1, · · · ,M + N − 1,
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where γ is an auxiliary variable.

In the real-valued case, the problem above is a simple linear program (LP). In the complex-valued case,

the above problem is a second-order cone program (SOCP) [37] that can be efficiently solved in polynomial

time by means of public-domain software (see, e.g., [38], [39]). The SOCP solver has guaranteed convergence,

unlike the iterative solution method proposed in [11] whose convergence properties appear to be unknown.

Remark: The additive decomposition in (76) also allows us to provide a simple explanation of the fact

that the use of a code sequence s with good PSL or ISL properties leads to a PSL- or ISL-optimal IV filter

whose ISNR is only slightly larger than that of the MF. (This fact has been amply illustrated numerically in

the literature, see, e.g., [9], [10], but never quite explained directly). Indeed, the said decomposition shows

that whenever s has good PSL/ISL properties, then z in the “correction term” in (76) is likely to have a small

norm; this observation, when combined with the fact that

ISNRIV =
‖s‖2 + ‖z‖2

‖s‖4
= ISNRMF

(
1 +

‖z‖2

‖s‖2

)
, (80)

provides the desired explanation. 2

APPENDIX B. PROOF THAT THE MATRIX R IS POSITIVE DEFINITE

Let C be the following (2M + N)× (2M + N) matrix:

C =


 C1 0

0 C2


 , (81)

where the (M + 1)× (M + 1) matrix C1 is given by

C1 =




sN · · ·
. . . ...

0 sN


 , (82)

and the (M + N − 1)× (M + N − 1) matrix C2 is defined as

C2 =




s1 0
... . . .

· · · s1


 . (83)
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Because s1sN 6= 0 (otherwise, the length of the probing sequence {sn}N
n=1 is less than the assumed value of

N ), it follows that det(C) 6= 0, where det(·) denotes the determinant of a matrix. This fact implies that the

matrix R, which can be written in the form:

R =
[

C C̃
]

 C∗

C̃∗


 = CC∗ + C̃C̃∗, (84)

for some matrix C̃ (whose exact expression is not of interest to this proof), must be strictly positive definite.

APPENDIX C. PROOF THAT ISLO DECREASES AS M INCREASES

We will attach an index M to s, x and R to indicate their dependence on this parameter. Clearly, sM+1 has

the following nested structure:

sM+1 =




0

sM

0


 . (85)

In view of (85), we can also write xM+1 in the following nested form:

xM+1 =




ρ

xM

ρ̃


 , (86)

where ρ and ρ̃ are scalar variables. Furthermore, it is straightforward to verify that

x∗MsM = x∗M+1sM+1, (87)

and that

x∗MRMxM = x∗M
[

02M+N I2M+N 02M+N

]
RM+1




0T
2M+N

I2M+N

0T
2M+N


xM ,

=
(
x∗M+1RM+1xM+1

)∣∣
ρ=ρ̃=0

, (88)

where 0M denotes the M × 1 all-zero vector and IM denotes the identity matrix of dimension M . It follows

from (87) and (88) that:
x∗MRMxM

|x∗MsM |2
=

x∗M+1RM+1xM+1∣∣x∗M+1sM+1

∣∣2
∣∣∣∣∣
ρ=ρ̃=0

, (89)

24



which implies immediately that ISLo
M+1 ≤ ISLo

M (because the optimal values of ρ and ρ̃ cannot produce a

larger value of ISL than ρ = ρ̃ = 0).

A more quantitative analysis of the difference ISLo
M − ISLo

M+1 runs as follows. Let V denote the matrix

post-multiplying RM+1 in (88), viz.

V =




0T
2M+N

I2M+N

0T
2M+N


 . (90)

Then:
1

ISLo
M+1

− 1

ISLo
M

= s∗M+1R
−1
M+1sM+1 − s∗M+1V (V∗RM+1V)−1 V∗sM+1

= s∗M+1R
−1/2
M+1

[
I−R

1/2
M+1V (V∗RM+1V)−1 V∗R1/2

M+1

]
R
−1/2
M+1sM+1

4
= s∗M+1R

−1/2
M+1P

⊥
R

1/2
M+1V

R
−1/2
M+1sM+1, (91)

where P⊥
R

1/2
M+1V

denotes the orthogonal projection matrix onto the null space of
(
R

1/2
M+1V

)∗
. Because P⊥

R
1/2
M+1V

is

a positive semi-definite matrix, it follows from (91) that ISLo
M+1 ≤ ISLo

M (as also proved before). Furthermore,

(91) shows that the equality ISLo
M+1 = ISLo

M holds if and only if there is an (2M + N)-vector β such that

R
−1/2
M+1sM+1 = R

1/2
M+1Vβ, or equivalently:

sM+1 = RM+1Vβ. (92)

Because the condition above appears hard to satisfy, we conclude that in general ISLo
M+1 is strictly smaller

than ISLo
M .

APPENDIX D: IV MATRIX FILTERS ARE NOT BETTER THAN IV VECTOR FILTERS

Let X be the (2M +N)×M̃ matrix mentioned in the Remark at the end of Section III-A. Pre-multiplication

of (9) with X∗ yields the equation:

X∗y = α0X
∗s +

M+N−1∑

k=−M−N+1,k 6=0

αkX
∗Jks + X∗ε. (93)

The LS estimate of α0 in the above equation is given by

α̂0 =
s∗XX∗y
‖X∗s‖2

= α0 +
M+N−1∑

k=−M−N+1,k 6=0

αk
s∗XX∗Jks

‖X∗s‖2
+

s∗XX∗ε
‖X∗s‖2

. (94)
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It follows from (94) that in the present case, the ISL and ISNR metrics should be defined as follows (the PSL

metric can be defined similarly, but we do not consider it in this appendix for brevity’s sake):

ISL =
M+N−1∑

k=−M−N+1,k 6=0

|s∗XX∗Jks|2
‖X∗s‖4

=
s∗XX∗RXX∗s

(s∗XX∗s)2 , (95)

where R is as defined in (20), and

ISNR =
s∗XX∗XX∗s

(s∗XX∗s)2 . (96)

Observe that the ISNR metric can be interpreted as a special case of the ISL metric corresponding to R = I.

With this fact in mind, in the following we focus on the ISL metric. We will show that the value of this metric

associated with any IV matrix X can also be achieved with an IV vector x (related to X in a way that will be

detailed below).

The expression for the ISL in (95), corresponding to the matrix case, appears to be much more complicated

than the vector case expression in (21). However, (95) can be simplified by using an additive decomposition

of X, which is the extension of the decomposition in (76) to the matrix case, namely:

X = PsX + P⊥
s X, (97)

where

Ps =
ss∗

‖s‖2
, (98)

P⊥
s = I−Ps = UU∗; U∗U = I, (99)

and where U comprises a unitary basis of the null space of s∗ (like in (76)). Using (98) and (99) in (97), we

can write X as:

X = sw∗ + UZ, (100)

for some M̃ × 1 vector w and some (2M + N − 1)× M̃ matrix Z whose exact expressions are not important

for this proof. Because multiplication of X by any non-zero constant does not change the ISL, we can assume

without introducing any restriction that ‖w‖2 = 1. A simple calculation based on (100) then shows that:

s∗XX∗s = ‖s‖4, (101)

and

s∗XX∗RXX∗s = ‖s‖4w∗ (ws∗ + Z∗U∗)R (sw∗ + UZ)w

= ‖s‖4
∥∥R1/2 (s + UZw)

∥∥2
. (102)
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It follows that

ISL =

∥∥R1/2 (s + UZw)
∥∥2

‖s‖4
. (103)

Next we note that

Zw =
[

w1I · · · wM̃I
]



col1(Z)
...

colM̃(Z)




4
= B∗z̃, (104)

where {wm} are the elements of w, and {colm(Z)} denote the columns of Z. We can see from (104) that ISL

depends on z̃ only through the component of this vector that lies in the range space of B. Therefore, for the

study of ISL, it is sufficient to consider vectors z̃ of the form:

z̃ = Bξ, (105)

where ξ is an arbitrary (2M + N − 1)× 1 vector. Insertion of (105) into (103) and utilization of the fact that

B∗B = I give:

ISL =
‖R1/2(s + Uξ)‖2

‖s‖4
. (106)

However, this is precisely the expression of ISL corresponding to the IV vector case; indeed, making use of

(76), we have that: ISL = ‖R1/2(s+Uz)‖2/‖s‖4. With this observation, the proof of the fact that an IV matrix

filter cannot produce smaller values of either ISL or ISNR is concluded.

ACKNOWLEDGEMENT

We would like to thank Dr. Yu. Abramovich for bringing the rich Russian literature on the topic of this

paper to our attention.

REFERENCES

[1] Y. I. Abramovich and M. B. Sverdlik, “Synthesis of a filter which maximizes the signal-to-noise radio under additional quadratic constraints,”
Radio Engineering and Electronic Physics, vol. 15, pp. 1977–1984, November 1970.

[2] V. T. Dolgochub and M. B. Sverdlik, “Generalized γ-filters,” Radio Engineering and Electronic Physics, vol. 15, pp. 147–150, January 1970.
[3] V. M. Koshevoy and M. B. Sverdlik, “Effect of memory and pass band of a generalized filter on efficiency of noise suppression,” Radio

Engineering and Electronic Physics, vol. 18, pp. 1181–1188, August 1973.
[4] S. D. Blunt and K. Gerlach, “Adaptive pulse compression via MMSE estimation,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 42, pp. 572–584, April 2006.
[5] V. P. Ipatov, “Choice of periodic PSK signal and filter combination,” Radio electronics and communications systems, vol. 21, no. 4, pp. 60–67,

1978.
[6] V. P. Ipatov, V. I. . Korniyevskiy, V. D. Platonov, and I. M. Samoylov, “Minimum sidelobe level of a periodic discrete signal in a wide finite

Doppler band,” Radio Engineering and Electronic Physics, vol. 29, pp. 32–37, February 1984.
[7] J. Jedwab, “A survey of the merit factor problem for binary sequences.” Sequences and Their Applications – SETA 2004, T. Helleseth, D.

Sarwate, H. Y. Song, and K. Yang, Eds., vol. 3486, Lecture Notes in Computer Science, pp. 30–55. Springer-Verlag, Heidelberg, 2005.

27



[8] T. Høholdt, “The merit factor problem for binary sequences.” Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, M. Fossorier,
H. Imai, S. Lin, and A. Poli, Eds., vol. 3857, Lecture Notes in Computer Science, pp. 51–59. Springer-Verlag, Heidelberg, 2006.

[9] N. Levanon, “Cross-correlation of long binary signals with longer mismatched filters,” IEE Proceedings - Radar, Sonar, and Navigation,
vol. 152, pp. 377–382, December 2005.

[10] C. Nunn, “Constrained optimization applied to pulse compression codes, and filters,” IEEE International Radar Conference, Arlington, VA,
USA, pp. 190–194, 9-12 May 2005.

[11] J. M. Baden and M. N. Cohen, “Optimal peak sidelobe filters for biphase pulse compression,” IEEE International Radar Conference, Arlington,
VA, USA, 7-10 May 1990.

[12] K. R. Griep, J. A. Ritcey, and J. J. Burlingame, “Poly-phase codes and optimal filters for multiple user ranging,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 31, pp. 752–767, April 1995.

[13] R. C. Daniels and V. Gregers-Hansen, “Code inverse filtering for complete sidelobe removal in binary phase coded pulse compression systems,”
IEEE International Radar Conference, Arlington, VA, USA, 9-12 May 2005.

[14] S. D. Blunt, K. J. Smith, and K. Gerlach, “Doppler-compensated adaptive pulse compression,” IEEE Conference on Radar, Verona, NY, USA,
24-27 April 2006.

[15] M. H. Ackroyd and F. Ghani, “Optimum mismatched filters for sidelobe suppression,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 9, pp. 214–218, March 1973.

[16] S. Zoraster, “Minimum peak range sidelobe filters for binary phase-coded waveforms,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 16, pp. 112–115, January 1980.

[17] R. Sato and M. Shinriki, “Simple mismatched filter for binary pulse compression code with small PSL and small S/N loss,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 39, pp. 711–128, April 2003.

[18] C. A. Stutt and L. J. Spafford, “A ‘best’ mismatched filter response for radar clutter discrimination,” IEEE Transactions on Information Theory,
vol. 14, pp. 280–287, March 1968.

[19] Y. I. Abramovich and M. B. Sverdlik, “Synthesis of filters maximizing the signal-to-noise ratio in the case of a minimax constraint on the
sidelobes of the cross-ambiguity function,” Radio Engineering and Electronic Physics, vol. 16, pp. 253–258, February 1971.

[20] Y. I. Abramovich, “Estimation of accuracy of a method for synthesis of filters which optimize the cross-ambiguity function in accordance
with the minimax criterion,” Radio Engineering and Electronic Physics, vol. 18, pp. 785–787, May 1973.

[21] P. Stoica, J. Li, and M. Xue, “On sequences with good correlation properties: A new perspective,” The 2007 IEEE Information Theory
Workshop on Information Theory for Wireless Networks, Bergen, Norway, 1-6 July 2007.

[22] W. D. Rummler, “A technique for improving the clutter performance of coherent pulse train signals,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 3, pp. 898–906, November 1967.

[23] D. F. DeLong and E. M. Hofstetter, “On the design of optimum radar waveforms for clutter rejection,” IEEE Transactions on Information
Theory, vol. 13, pp. 454–463, July 1967.

[24] L. J. Spafford, “Optimum radar signal processing in clutter,” IEEE Transactions on Information Theory, vol. 14, pp. 734–743, September
1968.

[25] J. Li, P. Stoica, and Z. Wang, “Doubly constrained robust Capon beamformer,” IEEE Transactions on Signal Processing, vol. 52, pp. 2407–2423,
September 2004.

[26] P. Stoica and R. L. Moses, Spectral Analysis of Signals. Upper Saddle River, NJ: Prentice-Hall, 2005.
[27] J. D. Wolf, G. M. Lee, and C. E. Suyo, “Radar waveform synthesis by mean-square optimization techniques,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 5, pp. 611–619, July 1969.
[28] S. M. Sussman, “Least-square synthesis of radar ambiguity functions,” IEEE Transactions on Information Theory, vol. 8, pp. 246–254, April

1962.
[29] V. M. Koshevoy and M. B. Sverdlik, “Joint optimization of signal and filter in the problems of extraction of signals from interfering reflections,”

Radio Engineering and Electronic Physics, vol. 20, pp. 48–56, September 1975.
[30] V. T. Dolgochub and M. B. Sverdlik, “Synthesis of signals for optimization of the ambiguity function in a given region,” Radio Engineering

and Electronic Physics, vol. 14, pp. 1563–1566, October 1969.
[31] V. P. Ipatov and B. V. Fedorov, “Regular binary sequences with small losses in suppressing sidelobes,” Radio electronics and communications

systems, vol. 27, no. 3, pp. 29–34, 1984.
[32] Y. I. Abramovich, B. G. Danilov, and A. N. Meleshkevich, “Application of integer programming to problems of ambiguity function

optimization,” Radio Engineering and Electronic Physics, vol. 22, pp. 48–52, May 1977.
[33] D. E. Vakman, Sophisticated Signals and the Uncertainty Principle in Radar. New York: Springer-Verlag, 1968.
[34] V. P. Ipatov, V. I. Korniyevskiy, V. D. Platonov, and I. M. Samoylov, “Boundaries of the sidelobes of a periodic discrete signal in a broad

Doppler band,” Radio Engineering and Electronic Physics, vol. 29, pp. 25–32, February 1984.
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TABLE I

THE SEQUENCES s2 USED IN x3 AND x4 .

N M s2

−−−−−+ +−−+ +−+−+−
0 −−−−−−+ +−−+ +−+−+

16
20, 40, −−−−−−−+ +−−+−+−+

60, 80. −−−−−−+ +−−+−+−+−
−−−−−−−+ + + +−−+−−+−+−+

0 −−−−−−+ + +−−+−+ +−+−+−+
21

20, 40, −−−−−−−−+ +−−+−−+−+−+−
60, 80. −−−−−−−+ + +−−+ +−+−+−+−

TABLE II

THE SEQUENCES s3 USED IN x5 .

N M s3

−−+−+−−−−−+ +−−++
60 +−−+ +−−+−+−−−−−+

16 −−−−−−−+ +−−+−+−+
80 −−−−−−+ +−−+−+−+−

21 60,80 −−−−−−+ + +−−+ +−+ +−+−+−

TABLE III

THE SEQUENCES s4 USED IN x7 AND x8 , FOR Φ = 5◦ .

N M s4

−−−−−+ +−−+ +−+−+−
0 −−−−−−+ +−−+ +−+−+

16
20, 40, −−−−−−−+ +−−+−+−+

60, 80. −−−−−−+ +−−+−+−+−
−−−−−−−+ + + +−−+−−+−+−+

0 −−−−−−+ + +−−+−+ +−+−+−+
−−−−−−−−+ +−−+−−+−+−+−

20, 40, −−−−−−−+ + +−−+ +−+−+−+−21
−−−−−−−−−−+−+ + +−−−+ + +

60, 80. −+−−+−−+−−−−+−+−+−+−+
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TABLE IV

THE SEQUENCES s5 USED IN x9 , FOR Φ = 5◦ .

N M s5

−−+−+−−−−−+ +−−++
16 60,80 +−−+ +−−+−+−−−−−+

−−−+ + + + +−+ + +−+ +−+−+ +−
21 60,80 −−+ + + + +−−−+−−−+−+−−+−
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Fig. 1. The ISL, PSL, and ISNR metrics associated with designs x1 − x5, as functions of M , for both N=16 and N=21.
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Fig. 2. The ISLD metrics associated with designs x1, x6, x7, x8 and x9 for Φ = 1◦, 5◦, 10◦ and 15◦ and for both N = 16 and N = 21.
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Fig. 3. The ISNRD metrics associated with designs x1, x6, x7, x8 and x9 for Φ = 1◦, 5◦, 10◦ and 15◦ and for both N = 16 and N = 21.
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Fig. 4. The cross-ambiguity functions SL(k, ω), associated with designs x1, x6, x7, x8 and x9, for Φ = 5◦, M=60 and for both N=16 and
N=21. Note that for x1 we have SL(k, ω)=0 for |k| ≥ N . Note also that to improve the visibility of the plots around ω=0, we show them only for
ω ∈ [0, ∆ω] (the behavior for ω ∈ [0,−∆ω] is similar).
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Fig. 5. The ISL(ω) and PSL(ω) metrics, associated with the designs x1, x6, x7, x8 and x9, for Φ = 5◦, M = 60, and for both N = 16 and
N = 21.
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