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Abstract

Assuming the availability of the channel state information at the transmitter (CSIT) and receiver
(CSIR), we consider the joint optimal transceiver design for multi-input multi-output (MIMO) communi-
cation systems. Using the recently developed generalized triangular decomposition (GTD), we propose a
scheme which we refer to as adaptable channel decomposition (ACD) to decompose a MIMO channel, in
a capacity lossless manner, into multiple subchannels with prescribed capacities, or equivalently, signal-
to-interference-and-noise ratios (SINR). This scheme is particularly relevant to the applications where
independent data streams with different qualities-of-service (QoS) share the same MIMO channel. The
ACD scheme has two implementation forms. One is the combination of a linear precoder and a minimum
mean-squared-error VBLAST (MMSE-VBLAST) detector, which is referred to as ACD-VBLAST, and the
other includes a dirty paper (DP) precoder and a linear equalizer followed by a DP decoder, which we
refer to as ACD-DP. Both forms of ACD are computationally very efficient. We also identify two seem-
ingly distinct communications problems, the precoder design for orthogonal frequency division multiplexing
(OFDM) communications and the optimal code division multiple access (CDMA) sequence design, as spe-
cial cases in the unifying framework of MIMO transceiver designs. The ACD scheme can be applied to
solve a considerablely wide range of problems.
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I. INTRODUCTION

For a multi-input multi-output (MIMO) communication system, if the communication environ-
ment is slowly time varying, the channel state information at transmitter (CSIT) is possible via
feedback or the reciprocal principle when time division duplex (TDD) is used. In the past several
years, considerable research has been devoted to the joint transceiver design utilizing CSIT and
channel state information at receiver (CSIR) (see, e.g., [1][2][3][4][5] and the references therein).
The goal of joint transceiver design is to improve the MIMO system performance, including the
channel throughput and bit-error-rate (BER) performance, through optimizing the precoder and
equalizer jointly. Two classes of MIMO transceiver designs have been proposed, including linear
transceiver designs [1][2][3] and nonlinear schemes [4][5]. All the MIMO linear transceiver de-
signs start with applying the singular value decomposition (SVD) to the MIMO channel matrix.
Due to the usually widely spread out singular values of the channel matrix, the SVD decom-
poses a MIMO channel into multiple parallel eign-subchannels with very different channel gains.
To maximize the overall channel capacity, the transceiver designs allocate different power to the
eign-subchannels using the “water filling” algorithm [1]. The “water filling” algorithm essentially
loads more power onto the subchannels with larger gains and less otherwise. Hence the channel
qualities, i.e., signal-to-noise ratios (SNR), become even more divergent. On the other hand, to
make the modulation and coding procedures easier, it is desirable to apply the same constellation
across all the subchannels as is adopted by the current standards such as the European standard
HIPERLAN/2 and the IEEE 802.11 standards for wireless local area networks (WLANS). In this
case, the overall BER performance is dominated by the BER of the worst subchannels. Thus one
may want to obtain subchannels with similar (or even identical) SNRs. To achieve this goal, the
linear transceivers load more power to the worse subchannels and less power to the better ones
[2][3], which leads to considerable capacity loss as analyzed in [4].

In [5], we propose a uniform channel decomposition (UCD) scheme, which is based on either a
VBLAST detector or a dirty paper (DP) precoder, to decompose a MIMO channel into several
identical subchannels. Our UCD scheme is strictly capacity lossless. That is, the sum capacity
of the subchannels are equal to the capacity of the MIMO channel obtained via SVD plus the
“water filling” algorithm. The UCD scheme can significantly outperform its linear counterparts
in terms of both BER performance and channel throughput.

All these aforementioned MIMO transceiver designs focus on improving the communication
quality subject to power constraints. In this paper, we tackle a new aspect of the MIMO
transceiver design problem. We regard a MIMO transceiver design as a way of decomposing
a MIMO channel into multiple subchannels. As we have mentioned, the MIMO channel decompo-
sition through SVD plus “water filling” lacks flexibility despite its optimality in terms of achieving
the maximal overall channel capacity. The success of UCD motivates a much more flexible channel
decomposition approach, namely the adaptable channel decomposition (ACD) scheme, which is
the main result of this paper. Using the recently developed generalized triangular decomposition
(GTD), we propose the ACD scheme to decompose a MIMO channel into multiple subchannels
with prescribed capacities, or equivalently, signal-to-interference-and-noise ratios (SINR). The
main properties of the ACD scheme are summarized as follows:

1. Given K parallel subchannels with capacities C1,Co,...,Ck, which is obtained through ap-
plying SVD plus “water filling” to a rank K MIMO channel, ACD can convert the K subchannels
into L > K subchannels with capacities Ry, Ry, ..., Ry, if and only if (Cy,...,Ck,0,...,0) € RY
majorizes (R1, Ry, ..., Rr) !. In particular, Zfil C; = ZiL:1 R;, i.e., the ACD is capacity lossless.
2. The ACD scheme has two implementation forms. One is the combination of a linear precoder
and a minimum mean-squared-error VBLAST (MMSE-VBLAST) detector, which is referred to

'The concept of majorization is introduced in Section II.



as ACD-VBLAST, and the other includes a DP precoder and a linear equalizer followed by a DP
decoder, which we refer to as ACD-DP.

3. Given the SVD of the MIMO channel matrix, the computational complexity of ACD, which
is to calculate the precoder and equalizer matrices, is O(K L), which is computationally quite
efficient.

Almost originated at the same time as the research on MIMO transceiver designs, the optimal
design of symbol synchronous CDMA (S-CDMA) sequences has been under intensive study over
the past decade (see, e.g., [6][7][8][9]). Although the two research topics have been studied in
an apparently independent manner in the signal processing and information theory communities,
we show that the CDMA sequence design problem can be viewed as a special case of the MIMO
transceiver design. Hence the ACD scheme can be applied, with little modifications, to the
design of optimal CDMA sequences. Moreover, the ACD-VBLAST and ACD-DP schemes can be
applied to design optimal CDMA sequences in the uplink (mobile-to-base) and downlink (base-
to-mobile) scenarios, respectively. Our ACD scheme, which is independently motivated by the
MIMO transceiver design problem, turns out to be related to the scheme proposed in [9]. The
relationship is discussed in Section IV.

The remainder of the paper is organized as follows. Section IT introduces the MIMO flat fading
channel model and identifies the problems of precoded orthogonal frequency division multiplexing
(OFDM) communications and optimal CDMA sequence designs as two special cases in the unifying
framework of MIMO transceiver designs. Several relevant results on channel capacity are also
briefly reviewed there. Section III introduces the concept of majorization, the GTD theorem, and
the closed-form representation of the MMSE-VBLAST detector. The ACD scheme is presented
in Section IV. We discuss the application of the ACD scheme to the problem of multi-task
MIMO communications with QoS constraints, which was originally studied in [10], in Section V.
In Section VI, we apply the ACD scheme to the design of optimal CDMA sequences. We also
present a comparative study of ACD and the scheme in [9]. Section VII gives the conclusions of
this paper.

II. CHANNEL MODEL, CAPACITY AND DECOMPOSITION
A. Channel Model

We consider a MIMO communication system with M; transmitting and M, receiving antennas
in a frequency flat fading channel. The sampled baseband signal is given by

y = HFx + z, (1)

where x € CF*! is the information symbols precoded by the linear precoder F € CMt*L and
y € CMrx1 s the received signal and H € CM~*M: js the channel matrix with rank K and with
its (7, 7)th element denoting the fading coefficient between the jth transmitting and ith receiving
antennas. We assume E[xx*] = 021, where E[-] is the expected value and I}, denotes the identity
matrix with dimension L and z ~ N(0,021,,) is the circularly symmetric complex Gaussian noise.
We define the SNR as

E[x*F*Fx| o2

p=—"F—=ST{F'F} = %’Iﬁr{F*F}, (2)
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where (-)* is the conjugate transpose, and Tr{-} stands for the trace of a matrix.

We note that the data model in (1) is generic. For an intersymbol-interference (ISI) channel
with impulse response h = [hg, h1,...,hyr_1]7, if a block data with length N is transmitted using
the “zero-padded” OFDM, then the received block data can also be written in the form of (1)



with _ _
ho 0 0 0
: ho 0 0

havr—1
H= 0 0 (3)

0 hy- ho
0 . - :

| 0 0 0 hy_1 |

In this case, H is a Toeplitz matrix with its dimensionality M; = N and M, = N + M — 1. If the

OFDM with cyclic prefix is used, the channel matrix is a circulant Toeplitz matrix, i.e.,

ho 0 har—1 h1
h1 ho 0  hum-— ho
- ) . 0 } W
hav—2 . havr—1
hyv—1 har—2 hi  ho 0
| 0 hpro1 har—o h1 ho |

Here, M; = M, = N. In either case, if the block data is precoded with the linear precoder F,
then the received data is given in (1). This IST channel problem has been studied in [11].

In an idealized synchronous CDMA (S-CDMA) system where the channel does not experience
any fading or near-far effect, L mobile users modulate their information symbols via spreading
sequences {si}z-Lzl, each of which has the processing gain N. The discrete-time baseband S-CDMA
signal received at the (single-antenna) base-station can be represented as [6]

y = Sx+1 (5)

where S = [sy,...,sz] € RV*L and the Ith (1 <1 < L) entry of x, z;, stands for the information
symbol from the [th user. In the downlink channel, the base station multiplexes the information
dedicated to the L mobile users through the spreading sequences, which are the columns of S.
Then all the mobiles receive the same signal given in (5). We remark that (5) can also be written
as (1) with H =1y and F = S. Here M, = M; = N is the processing gain. Hence, optimizing
the spreading sequences amounts to optimizing the precoder F for a MIMO system. Indeed, this
problem has been under intensive research in the past several years.

In summary, both designing a precoder for OFDM transmission through an ISI channel and
searching for the optimal S-CDMA sequences can be regarded as special cases in the unifying
framework of MIMO transceiver designs. MIMO transceiver designs can be used in the OFMD
and CDMA applications after only simple modifications. In this paper, we will concentrate on
MIMO transceiver design although we will discuss the optimal design of CDMA sequences later.
Throughout this paper, we assume perfect CSIR and CSIT, i.e., H is known exactly at both the
transmitter and receiver.

B. Channel Capacity and Decomposition

Denote the SVD of a rank K channel H as H = UAV*, where A is a K x K diagonal matrix
whose diagonal elements {\gr 5 }5_; are the nonzero singular values of H. To maximize the channel

capacity with respect to F given the input power constraint Tr{FF*} < po?/c2, one needs to



solve

Crr = log, |I + o 'HFF*H"|. 6
T e e 08 | (©)

The optimal linear precoder is [12]
F=Va&l/2 (7)

Here L = K and @ is diagonal whose kth (1 < k < K) diagonal element ¢, determines the power
loaded to the kth subchannel and is found via “water filling” to be

o\t
¢k(ﬂ):< —E> , (8)

with u being chosen such that o2 Z,Ile ér(1) = po? and (@)t = max{0,a}. In this case, we
obtain K subchannels with capacities

_|_
Pk \ 2 /‘)\%{,k )
Cr=logy |1+ E)\H,k = |log, " bit/s/Hz, k=1,2,..., K. 9)

Due to the usually large dynamic range of singular values {)\H,k}szla the SVD decomposes a
MIMO channel into multiple parallel eign-subchannels with different channel capacities. Moreover,
since the optimal power loading levels are fixed as given in (8), the achievable MIMO channel
decomposition is rigidly given in (9) and it lacks flexibility.

Another way of decomposing a MIMO channel is to use the VBLAST detector [13]. For a
MIMO system of (1) with M; < M, and rank K = M;, the transmitter allocates independent
bit streams across the M; transmitting antennas. To decode the transmitted information symbol,
VBLAST first estimates the signal with the spatial structure h;, where h; denotes the ith column
of H, and then cancels it out of the received signal vector. Next, it estimates the signal with
spatial structure hy and so on. The signal estimator can be either a ZF or an MMSE estimator.
The VBLAST scheme involves sequential nulling and cancellation and it decomposes the MIMO
channel into K subchannels (or layers as coined in [13]). By changing the ordering of the signal
detection, we can get K! subchannel combinations, each of which is capacity lossless [14].

Theoretically, more combinations of subchannels is possible via time sharing (see [15, Ch. 14.3]).
Recall that every DBLAST layer sends its data substream across the K transmitting antennas,
or VBLAST layers, in a time sharing manner [16]. For example, for a system with M; = 2, the

transmitted data is
Vertical Layer-1:  x1 ys x3 1

Vertical Layer-IT: 0 zo y3 x4 (10)

Let z; and y;,7 = 1,2,..., denote the symbols transmitted through the DBLAST layers I and 1II,
respectively, at time ¢. The receiver first estimates x1 and then estimates x2 by regarding ys as
interference. The estimates of z1, 2 are decoded jointly, which form the output of the diagonal
layer I. After subtracting out the effect of z1,22 from the received data, we can estimate and
decode y9,y3, which form the diagonal layer II. We remark that DBLAST can be viewed as a
combination of VBLAST and the time sharing technique, which decomposes the MIMO channel
into multiple identical subchannels.

However, time sharing can be difficult to implement in practice. For instance, the major
difficulty of DBLAST is the requirement of encoding the diagonal layer with short and efficient
error correction codes, which limits its practical implementation despite its superb theoretical
performance analyzed in [17].



If CSIT is available, more flexible and practical channel decompositions can be achieved. In
[5], we propose the UCD scheme which combines the geometric mean decomposition (GMD)
developed in [18] with either an MMSE-VBLAST detector or a DP precoder to decompose the
MIMO channel of (1) into L > K identical subchannels. Hence, the UCD scheme can achieve the
theoretical performance of the DBLAST scheme without resorting to any error correcting coding.

In this paper, we generalize the results of [5] and develop a systematic channel decomposition
that combines the recently proposed GTD algorithm with either an MMSE-VBLAST decoder
or a DP precoder. We show that given K parallel subchannels with capacities Cy,Cs,...,Ck,
which are obtained via SVD, ACD can convert the K subchannels into L > K subchannels? with
capacities Ry, Ra,..., Ry if and only if (R, Re, ..., Ry) is majorized by (Ci,...,Ck,0,...,0) €
RL. This scheme is particularly relevant to the applications where independent data streams with
different qualities-of-service (QoS) share the same MIMO channel [10]. For example, video services
usually require higher SNRs than audio services. Decomposing a MIMO channel into multiple
subchannels with prescribed capacities and transmitting independent data streams through these
subchannels can provide much convenience for resource allocations.

III. PRELIMINARIES
A. Majorization

We introduce several basic concepts and theorems of the majorization theory from [19].
Definition 1: For x,y € R", if

J J

g <Y oy, 1<i<n (11)

=1 i=1

with equality holds for j = n, where the subscript [;] denotes the ith largest element of the
sequence, we say that x is majorized by y and denote x <, y, or equivalently, y >, x.

Definition 2: Annxn matrix P is doubly stochastic ifits (¢, j)th entry p;; > Ofori,j =1,...,n,
and 3 i, pij = L and 35, pij = 1.

Theorem IIl.1: x <4 y if and only if there exists a doubly stochastic matrix P such that
x = Py.

A square matrix IT is said to be a permutation matrix if each row and column has a single one,
and all the other entries are zero. There are n! permutation matrices of size n x n.

Theorem II1.2: The permutation matrices constitute the extreme points of the set of doubly
stochastic matrices. Moreover, the set of doubly stochastic matrices is the convex hull of the
permutation matrices.

It follows from Theorems III.1 and III.2 that the set {x|x < y} is the convex hull spanned
by the n! points which are the permutations of y.

As we have mentioned before, given K parallel subchannels with capacities C1,Cs,...,Ck,
which are obtained via SVD, ACD can convert the K subchannels into L > K subchannels
with capacities Ry, Ry, ..., Ry ifand only if (Ry, Ry, ..., Rr) <4 (C1,...,Ck,0,...,0) € RL. For
example, for a MIMO channel H with rank K = 3, assume that the capacities of the 3 subchannels
obtained via SVD are C7 > Cy > Cs. If L = K, then ACD can decompose the MIMO channel
into 3 subchannels with a rate vector r = (R, R, R3) if and only if r lies in the convex hull

C 1 C 1 C 2 C 2 03 03
Co 02 ) C3 ) Ol ) 03 ) CQ ) Cl . ( 12 )
C 3 C 2 C 3 Cl Cl C12

2If L < K, some eign-subchannels are discarded, which causes capacity loss. Hence we focus on the case of L > K.



Here Co stands for the convex hull defined as
CO{S} = {01371 + ...+ 9K.'L'K|.’Iii €5,6,>00,+...+0 = 1}. (13)

In general, the “capacity region” is a convex hull defined by K! vertices in a K-dimensional
space. Since the ACD is capacity lossless, i.e., ZZK; 10 = Zfi 1 R, the capacity region falls into
a (K — 1)-dimensional hyperplane. The gray area in Figure 1 shows the convex hull of (12) with
C1 =3, Co = 2, and C3 = 1. In this case, the 6 vertices lie in the 2-D plane {x : Z?:l z; = 6}.
An interesting special case is the UCD scheme [5], which achieves the rate vector corresponding
to the center of the convex hull, i.e., r = (2,2,2).

Capacity lossles region (C1 =3, C2 =2, C3 =1)

(1,2,3) -

ey

2.5 3 3

Fig. 1. Tllustration of the capacity lossless region obtainable via ACD. We assume K = 3, C; = 3, Cy = 2,
and 03 =1.

Definition 3: For x,y € R%, if

J J
za <Ilvep 1<i<n (14)
with equality for 7 = n, we say that x is multiplicatively majorized by y and write x <« y, or
equivalently, y >« x.
Obviously, if x < y, then logx < logy.

B. Generalized Triangular Decomposition

Now we are ready to introduce the GTD theorem. The following result is due to Weyl [20] (also
see [21, p. 171)):

Theorem II1.3: If A € C"*" with eigenvalues |y1| > |y2| > ... > |ya| and singular values
A1 > XA > ... > X, >0, then

{lllica << Qakisr (15)
The following result is due to Horn [22] (also see [21, p. 220)):



Theorem II1.4: If r € R* and A € R} satisfy |r| <« X, where |r| stands for the absolute value
of r, then there exists an upper triangular matrix R € CK*K with singular values A and with r
on its diagonal.

We now combine Theorems II1.3 and II1.4 to obtain:

Theorem II1.5 (GTD theorem) Let H € C™ ™ have rank K with singular values A € RE.
There exists an upper triangular matrix R € CX¥*X and matrices Q and P with orthonormal
columns such that H = QRP* if and only if the diagonal elements of R satisfy |r| <x A.

Proof: If H= QRP", then the eigenvalues of R are its diagonal elements and the singular
values of R coincide with those of H. By Theorem II1.4, r <, A holds. Conversely, suppose
that r < A holds. Let H = UAV* be the singular value decomposition, where A € RE*XX By
Theorem II1.5, there exists an upper triangular matrix R € CK*¥ with the r on the diagonal and
with singular values A. Let R = UgA'V{j be the singular value decomposition of R. Substituting
A = UjRVj in the singular value decomposition for H, we have

H = (UU})R(VV))".

In other words, H = QRP* where Q = UUj and P = VVj,. [ |

In [23], we propose a computationally efficient and numerically stable algorithm to achieve
the GTD predicted by Theorem IIL.5, which is summarized in Appendix A to make this paper
self-contained.

C. Closed-Form Representation of MMSE-VBLAST

The derivation of the ACD scheme for MIMO transceiver design relies on the closed-form
representation of the MMSE-VBLAST detector introduced in [24].

Suppose M; < M, and K = M;. The VBLAST scheme does not use any precoder, i.e., F =1,
(here L = M;). The data model of (1) can be rewritten as

M
y= Zhiwi + z, (16)
i=1

where h; is the ith column of H. To decode the transmitted information symbol, VBLAST first
detects the signal with the spatial structure hyy,, which is usually referred to as the M;th layer?,
and then cancels it out of the received signal vector. Next, it detects the signal with spatial
structure hps,_; and so on. If the signals are detected based on the MMSE estimates, we refer to

them as MMSE-VBLAST. This sequential nulling and cancellation procedure is summarized as
follows [13]

Vmy =Y
fori=M;:-1:1

& =wiy; (nulling step)

z; = C 4]

v, 1 =v; — h;i; (cancellation step)
end

where C stands for mapping to the nearest symbol in the symbol constellation.

2

. : . o
Consider the augmented matrix (we remind the reader that o« = —%)
O-Z'

T
vl (M, +Mz)x My

3In this paper, we also refer to it as subchannel.

- |



Applying the QR decomposition yields

u
Hy, = QuRu, £ [ e ] Ru,, (18)
Qp,
where R, € CM¢*M: ig an upper triangular matrix with positive diagonal and Qy, € CMr XMy,
We can obtain the nulling vectors {w;}X ;| using Qj, and Ry, as shown in the following lemma
[24] (also see the more detailed version [25]):

Lemma IIL1: Let {q;}}% denote the columns of Qy, and {ri}® the diagonal elements of
Ry, where Qf; and Rp, are given in (18). The MMSE nulling vectors are

w; :'r;z.lqi, 7 = 1,2,...,Mt. (19)

It is easy to verify that the output signal-to-interference-and-noise ratio (SINR) of the ith layer
(i.e., the signal corresponding to h;) obtained via the MMSE-VBLAST detector is

pi = hiC; 'hy, (20)

where C; = E;;ll h;h? + ol.
The following lemma is established in [5].
Lemma II1.2: The diagonal of Ry, given in (18) and {p;}%4 satisfy

a(l+p)=r2, i=1,2,..., M. (21)
Hence the capacity of the ith subchannel is

R; =log(1+ p;) =log(a 1r2), i=1,2,..., M. (22)

1
IV. ADAPTABLE CHANNEL DECOMPOSITION
A. ACD-VBLAST

Now we are ready to establish the ACD scheme. We see from (2) that F can always be scaled
such that « = 1. Hence without loss of generality, we let & = 1 in the sequel to simplify the
notation. If we modify the precoder F given in (7) to be

F = V&'/2QT (23)

where (-) denotes the transpose, @ € RFXK with L > K, and QTQ = I, then we see through in-
serting (23) into (6) that the F given in (23) is also a precoder maximizing the channel throughput.
However, introducing €2 brings much greater flexibility than the precoder of (7) as demonstrated
in the following theorem.

Theorem IV.1 (ACD Theorem) Consider a MIMO channel of (1) with F given in (23). For
any L > K, let ¢ € R” be a zero vector with its first K elements replaced with {Cy}4_;, where

C, = log (1 + )\%I,k¢k)' Given any rates {Ry}~_,, we can find a semi-unitary matrix Q € REXK

such that the combination of the linear precoder F = V&1/2QT and the MMSE-VBLAST detector
yields L subchannels with capacities {Ry}£_, if and only if {Rx}£_, <4 c.
Proof: Given the precoder of (23), the virtual channel is

G 2 HF = UA3'/2QT 2 UAQT (24)
where Ag = A®'/? is a diagonal matrix with diagonal elements

Aei=Amid?, i=1,... K. (25)
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Let the augmented matrix G, be defined as

T
o, -[UheT] -
L (Mp+L)X L
which can be rewritten as
_|v o [Ac:0kxr-K)] | QF
G, = [ 0 0 ] IL><( | Q, (27)
where Qg € RFXL is orthogonal with its first K columns forming €. Let J denote
g2 | [AciOkx-i)] | = | [An®* 0k (1-r0)] | (28)
I, I,

The singular values of J are

A/ 2 b <1<
AJ,Z-:{ e e (29)

1, i> K.
According to Theorem III.5, we can apply GTD to obtain
J=Q,R,P] (30)
if and only if the diagonal elements of Ry € REXL, which we denote as {r J,ii}iLzl, satisfy
{Iraalticy =x {aiticr (31)

Note that both Q; and P; are real-valued matrices because J is a real-valued diagonal matrix.
Inserting (30) into (27) yields

U o
G, = [ 0 ] Q/R,/P)Qy. (32)
Choose Q0 = P}— and define
U o
Q.= |y oo 3

Then (32) can be rewritten as G, = Qg, R, which is the QR decomposition of G,. The semi-
unitary matrix € associated with G, consists of the first K columns of Q¢ = P!. By Lemma
IT1.2, it follows that for @ = 1, (31) is equivalent to

{1+ pi}ie, = {'r?],ii}iLzl <x {A%,i}szla (34)
where p;, 1 < i < L, denotes the ouput SINR of the ith subchannel, and A;; is given in (29). If
{Ri}iz; = {log(1 + pi)}izy <4 {log >‘.2I,z'}iL:1 =c, (35)

then (31) and (34) hold, which implies the existence of Q (the first K columns of P).
Conversely, suppose that there exists a semi-unitary matrix 2 such that the linear precoder

F = V&'/2QT and the MMSE-VBLAST detector yields L subchannels with capacities { Ry }£_; .

Let G, = Qg, R be the QR decomposition. Since the singular values of G, and R; are the
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same and the eigenvalues of R are its diagonal elements, it follows from Theorem II1.3 of Weyl
that (31) holds. Hence, by (34), we conclude that (35) holds. [ ]

The proof of Theorem IV.1 is insightful. Indeed, given the SVD of H and the “water filling”
level /2, we only need to calculate Ag, J, and the GTD of J given in (30). Then we immediately
obtain the linear precoder F = V&/2QT where € consists of the first K columns of P-Jr. Let Qg
denote the first M, rows of Qg,. According to Lemma III.1, the nulling vectors are calculated as

Wi =T,50Gi 1 <i<L, (36)

where r;;; is the ith diagonal element of R; and qg, ; is the ith column of Q‘éa.

We can exploit the structure of J to further reduce the computational complexity of GTD. It
is easy to verify that the SVD of J defined in (28) is

[Ag 0k r—r)AT!

J=
At

AT, (37)

where Ay is an L x L diagonal matrix with the diagonal elements given in (29). Applying the
GTD matrix decomposition algorithm given in Appendix A to A yields

A;=(QiQz...Qr1)R;(PPy...PL)". (38)

Inserting (38) into (37) yields

. —1
J=| [Ac: OKX(_LI—K)]AJ (Q1Qs...Qr_1)R;(PiPy...Pr_)T. (39)
J
The linear precoder is
F=V®&'/2Q=V [<I>1/250KX(L_K)] P,P,...P;_;. (40)

The nulling vectors are given by (36) with

Q4. = UlAciOkyxr-x)A;'QiQ2...QL 1

- U |:I‘OK><(L—K):| QlQQ...QLfl, (41)

where I' € REXK ig diagonal with its ith diagonal element being v; = \/% Note that Q; and
G,i

P;,l = 1,2,...,L, are the Givens rotation matrices and hence calculating (40) and (41) needs

O(My(L + K)) and O(M, (L + K)) flops, respectively.

Given the SVD of H and the power allocation level @, then the ACD-VBLAST scheme needs
to run the procedures summarized in Table I. If M; = M, = K, then the ACD-VBLAST scheme
requires only O(L? + K? + K L) flops, given the SVD of the channel matrix.

B. ACD-DP

As a dual form of ACD-VBLAST, the ACD scheme can be implemented by using a DP precoder,
which we refer to as ACD-DP. For ACD-DP, a direct construction of the linear precoder F as

done in Section IV-A is not obvious. Instead, we exploit the uplink-downlink duality revealed in
[26] to obtain ACD-DP. This technique is also used in [5].
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TABLE 1
ACD ALGORITHM
step operation flops
1 Calculate Ag = A®!/? O(K)
2 Obtain A ; using (29) O(K)
3 | Apply GTD to A to obtain (38) O(L?)
4 Generate F using (40) O(My(L + K))
5 Compute Q¢ using (41) O(M,(L+ K))
6 Calculate {w;}~; using (36) O(M,L)

We first apply the ACD-VBLAST scheme to the reverse channel
y =H'Fx + z, (42)

where the roles of the transmitter and receiver are exchanged and the H in (1) is replaced by H*.
Then we obtain the precoder F and the equalizer W £ [wy,...,wy] from H* according to (40)
and (36), respectively. Applying F and the VBLAST detector with nulling vectors {w;}~ |, we
obtain L subchannels
i—1
wfy:wa*fixi—l—waH*fjxj +wiz, i=1,...,L, (43)
j=1

where the ith subchannel (43) is free of interference from the jth (5 > i) subchannels which are
detected and cancelled out in advance. The SINR of the subchannel (43) is

[wiH*i[* 03

wiwio? + 30,7 [wiH 202

pi = (44)

Note that replacing w; by w;, which is obtained by scaling w; such that ||w;|| = 1, does not
change p; since the output SINR is invariant to the length of w;. Also note that a = 1, i.e.,
02 = o2. Hence (43) can be simplified to be

wH*f;|?
pPi = | Z'_Zl _ Z*| e 12 (45)
Let f;, i = 1,..., L, be the scaled version of f; and has unit length. Denote p; = ||f;||?>. Then
wiH*f; 2p- )
pi = |ijl f*l :_ 5 i=1,...,L. (46)
1 +Zj:1 |wi*H*f;[°p;
Let a;; = |ffHw,|?. Then (46) can be represented in the matrix form
a1 o - 0 p1 p1
—pP2012 a9 b2 _ p2 (47)
: 0 :
—pLOIL —pPLO2L "' GLL pL PL

According to the uplink-downlink duality, in the original channel, the precoder of ACD-DP should
be F = [\/qiW1,...,/azwz], where {g;}2, will be determined later in (51), and the receiving
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vectors are f;, i = 1,..., L. Then we get L subchannels whose ith scalar subchannel of the MIMO
channel is
- L B i—1 - B
yi = G WGz + Y GHW gz + Y LHW, gz + £z (48)
j=itl j=1

Applying the dirty paper precoder to x; and treating Z;;ll fi*HWj\/q_jwj as the interference known
at the transmitter (note that here we precode the first layer first while for ACD-VBLAST, we
detect the Lth layer first), we obtain an equivalent subchannel

L
yi = EHW gz + Y FHW;/gz; + £z (49)
j=it1

with SINR (again, recall that = 1 and 02 = ¢?2)

i = ‘f'fi*HWE'Q —, fori=1,2,...,L. (50)
1+ 35 4|5 Hw,[?
Similar to (46), (50) can also be represented as
ail —p1012 vt —pP101L q1 P1
0 agy - _92'@2L @ | _ ,0:2 . (51)
0 0 arr qr PL

It is easy to see that ¢; > 0, 0 < ¢ < L. It is proven in [26] that Zle ¢ = tr(FF*) = tr(FF*) =
ZiL:1 p;- That is, to obtain L subchannels with SINRs {p;}~ ;, the ACD-DP needs exactly the
same power as the ACD-VBLAST. To make this paper self-contained, we give below an alternative
proof to this interesting and useful fact.

Let U4 denote a strictly upper triangular matrix whose (4, j)th entry is a;; for 1 <i < j <L
and zero otherwise. Let D4 and D, be two L x L diagonal matrices with their sth element equal
to a;; and p;, respectively. Then (46) can be rewritten as

(’DA - D,lel) p=p (52)
or equivalently
(D;lp - u}) p=1 (53)
where p = [p1,...,p]", p=[p1,--.,pz]" and 1 is a vector with unit elements. Hence
-1
p= (D,;lm - u}) 1 (54)
Similarly, (51) can be rewritten as
(Da—Dya)a=p (55)
or
(D,'Da—Ua)q=1. (56)
Hence

a=(D,'Da—Us) '1. (57)
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From (54) and (57),
L 1 L L
> pi=17 (Dp_lDA —UD 1=17(D,'Da~Ua)" 1=) i (58)
i=1 =1

We can use the Tomlinson-Harashima precoder [27][28] or the trellis precoder [29] to achieve
known interference cancellation at the transmitter. For a system with high dimensionality, ACD-
DP is a better choice than ACD-VBLAST since it is free of propagation errors.

V. MIMO COMMUNICATIONS WITH QOS CONSTRAINTS

In this section, we apply the ACD scheme to MIMO communications with QoS constraints.
Suppose we want to transmit L > K independent data streams through a MIMO channel. In-
stead of multiplexing all the substreams in the time division manner to share the entire MIMO
channel, we apply ACD to decompose the MIMO channel into multiple subchannels whose capac-
ities/SINRs meet the QoS requirements of the substreams, and dedicate one subchannel to each
substream. In [10], the authors studied the same problem. They proposed a linear transceiver
design which, similar to ACD, can also control the SINR of each subchannel via designing the
precoder. However, the linear transceiver is capacity lossy and can suffer from considerable per-
formance degradation compared with our ACD scheme as we will show at the end of this section.
Given that all the subchannels meet the QoS constraints, we want to minimize the overall input
power. We need to solve the following optimization problem:

ming tr (FF*)
subject to ( I;IF ) = QR (59)
L
diag(R) = {V/T+ pi}L;.
Here QR denotes the QR decomposition and diag(R) denotes the vector formed by the diagonal
of R. According to Lemma II1.2, the diagonal of R determines the SINRs of the subchannels.

Without loss of generality, we assume that p1 > ps > ... > pr. We now consider a problem whose
constraints are more ralaxed than those of (59):

ming tr (FF*)
. HF
subject to Ag, =x {VI+pitl,, Ga= ( I, ) , (60)

where Ag, stands for the singular values of the augmented matrix G,. In general, for any matrix
A, we let A4 denote the singular values of A. By Theorem II1.3 of Weyl, if F is feasible in (59),
then F is feasible in (60). We now further simplify (60) and show that its solution provides a
solution of (59).

Theorem V.1: If H = UAV™ is the singular value decomposition of H, then (60) has a solution
of the form F = V&/2 where ® ¢ REXK jg a diagonal matrix with diagonal elements ¢,
1 <4 < K, chosen to solve the problem

ming Zfil o
subject to [T, (1 + )\%{’ﬂsz’) >

[, (1 +p), x>0 1<k<K-1, (61)
Hil;(l + )‘%I,z'ﬁbi) = Hf:l(l + pi)-
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Moreover, if QR ,PT is the GTD of J in (28) where ® is a solution of (61), then (59) has the
solution F = V®'/2QT where Q is the matrix formed by the first K columns of P}.
Proof: See Appendix B. |
We now make a change of variables to further simplify the formulation of (61). We define

Vi = ¢i+1/Ny,, 1<i<K,
B = XIQ;H{J:K(I‘FPZ')-

With these definitions, (61) reduces to

. K
mln"/’ Ei:l ,(pz

(63)
subject to Hle h; > Hle Biy, g > I/A%{,k, 1<k<K.

Notice that the equality constraint in (61) has been dropped since this constraint is automatically
satisfied at an optimum. That is, if ¢ is feasible in (63) and the inequality corresponding to k = K
is strictly positive, then the cost is reduced when the trailing components of ¥ are lowered.

Clearly, the feasible set for (63) is nonempty and the cost function tends to infinity as any of
the components of ¥ tends to infinity. By continuity of the cost function and the constraints, a
minimizer must exist. We now analyze the structure of the minimizer. By exploiting the structure,
we obtain a fast algorithm for solving (63).

We first study a similar optimization problem with relaxed constraints.

Lemma V.1: Any solution 9 of the problem

K k k
min ) ¢i subjectto [Jvi = [[A: 1<k<K, (64)
=1 =1 =1

has the property that ;1 < ¢; for each 1.
Proof: We replace the inequalities in (64) by the equivalent constraints obtained by taking

log’s:
k

k
D log(ihi) > > log(B), 1<k <T,
=1

i=1

The Lagrangian £ associated with (64), after this modification of the constraints, is

K k
Lp,p) =) <¢k — e Y, (log(ths) — 10%(51))) -

k=1 i=1

By the first-order optimality conditions associated with 1, there exists u > 0 with the property
that the gradient of the Lagrangian with respect to 1 vanishes. Equating to zero the partial
derivative of the Lagrangian with respect to 1);, we obtain the relations

K
i=j

Hence, ¥; — 11 = p; > 0. |
Using Lemma V.1, we can gain insights into the structure of a solution to (63).
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Lemma V.2: There exists a solution 9 to (63) with the property that for some integer j € [1, K],

1
Pip1 < foralli < j, iy > foralli>j, 1 = e for all i > j. (65)
K

In particular, 9; < ; for all 1.
Proof: If 4 is a solution of (63) with the property that ; > A% forall1 < j < K, then
2

)2

by the convexity of the constraints, it follows that 1 is a solution of (64). By Lemma V.1, we
conclude that Lemma V.2 holds with j = K + 1. Now, suppose that 1 is a solution of (63) with
W = 1//\%{,1- for some 7. We wish to show that v, = l/A%I’k for all £ > 4. Suppose, to the contrary,
that there exists an index k > ¢ with the property that ¢, = 1/)\%{,19 and g4 > 1/)\%{7,“_1. We
show that components k and k+ 1 of ¢ can be modified so as to satisfy the constraints and make
the cost strictly smaller. In particular, let ¥ (e) be identical with 4 except for components k and
k+1:

PO = L+ and (0 = 15 (66)

For € > 0 small, 1(¢) satisfies the constraints of (63). The change A(e) in the cost function of
(63) is

AW = U+ g+ L — g — .

The derivative of A(e) evaluated at zero is

A'(0) = Yr — Y-

Since 1 /)‘%Lk is an increasing function of k£ and since 9, = 1/ ’\%I,k’ we conclude that g1 > g
and A’(0) < 0. Hence, for ¢ > 0 near zero, 1(¢) has a smaller cost than 1(0), which yields a
contradiction. Hence, there exists an index j with the property that ¢; = 1/ A%I,i for all 4 > 7 and
P > 1//\%” for all ¢ < j.

According to Lemma V.1, 9; > ;41 for any i < j. To complete the proof, we need to show
that 1; < j41. As noted previously, any solution of (63) satisfies

K K
v =1]5:
i=1 =1
which implies (cf. (62))
. . K i
=115 II 8% | >[5
i=1 i=1 i=j+1 i=1

That is, the constraint ngl i > ngl Bi in (63) is inactive. If 9; > 1,11, we will decrease the
j-th component and increase the j+1 component, while leaving the other components unchanged.
Letting %(d) be the modified vector, we set

1446

Pi+1(0) = (1 +0)Pj1 and  ;(0)

Since the j-th constraint in (63) is inactive, 1(d) is feasible for § near zero. And if ¥; > 111,
then the cost decreases as ¢ increases. It follows that 1; < ;1. |

We refer to the index j in Lemma V.2 as the “break point.” At the break point, the lower
bound constraint 9; > 1/)\% ; changes from inactive to active. We now use Lemma V.2 to obtain
an algorithm for (63). ,
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function ¥ = acdPow (B,A\)
L=1; R =1length (8) ; ¢ = zeros (1, R) ;
v = cumsum (log (B)) ;
while R > L
[t, 11 = max (y(L:R)./[1:R-L+1]) ;
v =exp (t) ; L1 =L+1-1;
if v > 1/A(L1)"2

P (L:L1) = v ;
L=L+1;
~(L:R) = v(L:R) - ~(L-1) ;

else
P (L1:R) = 1./(A(L1:R)."2) ;
v(L1-1) = v(R) - sum (log (¢ (L1:R))) ;
R=L1-1;
end
end

Fig. 2. A Matlab function to solve (63).

Lemma V.3: Let v, denote the k-th geometric mean of the f;:

k 1/k
Ve = (H ﬂz) ;
i=1

and let [ denote an index for which -y is the largest:
[ =arg max{y;:1 <k <K} (67)

If v, > 1/A?, then putting ¢; = -y for all 4 <[ is optimal in (63). If v, < 1/A?, then ¢; = 1/)\%{#.
for all i > 1 at an optimal solution of (63).
Proof: See Appendix C. [ |

Based on Lemma V.3, we can use the following strategy to solve (63). We form the geometric
mean described in Lemma V.3 and we evaluate [. If v, > 1/ )\%I,l, then we set ¢; = ; for © < [,
and we simplify (63) by removing v;, 1 < 4 <[, from the problem. If 7, < 1 /)\%{J, then we set
v =1 /)\%{ﬂ- for 4 > [, and we simplify (63) by removing v;, [ < i < K, from the problem. A
Matlab code implementing this algorithm appears in Figure 2.

After obtaining the power loading level ¢; = 1; —1/ A%Li’ 1 <1 < K, we calculate the precoder F
and the nulling vectors {w;}~ | according to Table I in Section IV. Note that one of the possible
paths through the acdPow routine makes the leading elements of 9 all equal while setting the
trailing elements of ¢; = 1/ )\%”. This path coincides with the standard water filling algorithm.
Note that the role of 9 is analégous to that of the Lagrange multipler x in (8). In this case, the
ACD scheme is optimal in terms of maximizing the overall throughput given the input power. On
the other hand, if some substream has a very high prescribed SINR such that the [ given in (67) is
less than the “break point” j, then % leads to be a multi-level water filling power allocation, which
suffers from overall capacity loss. This happens when the target rate vector [Ry,... Ry falls out
of the convex hull spanned by the L! permutations of [Cy,...,Ck,0,...,0] (cf. Figure 1), where
Ci,k=1,..., K, are the capacities of the eigen subchannels with water filling power allocation.
As a remedy to this issue, one can “break” (if it is practically allowable) the oversized substream
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into more than one substreams with smaller rates, or equivalently, lower SINR requirements. Note
that ACD can decompose a MIMO channel into an arbitrarily large number of subchannels.

An interesting special case is that p1 = po = ... = pg, i.e., the substream shares the same
SINR requirements. In this case, /1 < 2 < ... < Bk since the singular values {\g;}X, are
in nonincreasing order, and acdPow yields a standard water filling solution. In this case, ACD
becomes UCD.

We present one numerical example to conclude this section. We assume Rayleigh independent
flat fading channels with M; = 5 and M, = 6. We consider equal QoS requirements for L = 5
independent substreams. Figure 3 compares the input power needed by our ACD scheme and the
linear transceiver scheme of [10]. Our scheme can save about 2.5 dB for any prescribed output
SINR.

M = 6, M, =5 iid Rayleigh Flat Fading
30 T T T T

= N N
¢ o a1

=
o

Input SNR (dB)

0 - - Linear TXRX |...
— ACD

-5 I I I I
0 5 10 15 20 25

Prescribed Output SINR (dB)

Fig. 3. Input SNR vs. Output SNR. Result is based on the average of 500 Monte Carlo trials of a i.i.d.
Rayleigh flat fading channel with My = 5 and M,. = 6.

VI. CDMA SEQUENCE DESIGN

As we have mentioned before, the problem of optimal CDMA sequence design is a special case
in the framework of designing the MIMO transceivers. Hence the application of the ACD scheme
to MIMO transceiver design, which we have developed in Section V, can be used for the CDMA
sequence design with small modifications. Indeed, due to the simple channel matrix (H = I),
some procedures of the ACD scheme can be simplified. We shall show that the ACD scheme
turns out to be an improved solution to the sequence design proposed in [9]. At the end of this
section, we will compare our ACD scheme and the scheme proposed in [9].

A. CDMA Sequences Mazimizing Sum Capacity

Recall that the precoder maximizing the overall MIMO channel capacity is F = V&1/2QT. For
an S-CDMA channel, H = I, then V = I and the optimal power loading level is the uniform
power allocation. Hence the CDMA sequence maximizing the sum capacity is S = \/ﬁQT. Since
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Q has orthonormal columns, we obtain SST = pI. This observation coincides with the findings in
[6], in which the authors show that the CDMA sequences maximizing the sum capacity are the
Welch-Bound-Equality sequences.

B. Uplink Case

For the uplink scenario, i.e., the mobiles to base station case, the base station calculates the
optimal CDMA sequences for each mobile user and the associated successive nulling vectors needed
by itself. Then the base station informs the mobile users their designated CDMA sequences.

First, we need to calculate the power loading levels ® € RV*¥" gsuch that the following GTD
matrix decomposition is possible:

5,2 ( [él/Q?OINx(L_N)] > = QRPT, (68)
L

where the diagonal elements of R, 73,1 = 1,2,..., L, satisfy the QoS constraints. Note that the
singular values of ®, form a sequence whose first N elements are /1 + ¢;,7 = 1,2,..., N, followed
by L — N ones. From Theorem III.5, (68) exists if and only if

{1+ ¢k o1, 1) = {1+ ity - (69)
Similar to (61), we need to solve the problem

. N
ming Doin bi
subject to ({14 @i}V, 1,...,1) =« {1+ pi}l,. (70)
Similar to (63), (70) can be further simplified using the variables

L

pi=¢i+1, Bi=1l+pifori<K, and Bx= [+ p)
i=K

The simplified problem is
ming 3.5

(71)
subject to Hle P > Hle Bi, vpr>1, 1<k<K.

The algorithm acdPow simplifies immensely when we apply it to (71). Since ; > 1 = )\;’i for all
i, the constraints 1; > 1 are inactive. Since §; < B;_1 for all ¢ < K, the geometric means satisfy
¥; < 7i—1 for all ¢ < K. Hence, in Lemma V.3, the value of [ is either 1 or K. If [ = 1, then we
set 11 = 1 and we remove 1 from the problem. If [ = K, then 1; = g for all 5. It follows that

there exists an index j with the property that
1/(K—j)

K
;=0 foralli <j and ;= H Bi for all 4 > j.
i=j+1

This observation coincides with the solution obtained in [9].

Let ¥ denote an L x L identity matrix with its first K diagonal elements replaced by 1;,1 <1 <
K. According to the ACD scheme presented in Section IV-A, we then apply the GTD algorithm
to ®!/2 to obtain

¥l/2 = QyRyPY,. (72)
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According to (40),
S=F= [@1/2 E0N><(L—N)] Py. (73)

Let
Vi, vi] = [ 0y - m)] 2/ Qu. (74)

By (41) and (36), the nulling vectors used at the base station is
w; = T\E}iivi, (75)

where ry ;; is the ith diagonal element of Ry. In summary, the base station needs to run the
following three steps:

1. Solve the optimization problem (71).

2. Apply the GTD algorithm to ¥'/2 in (72).

3. Obtain the spreading sequences for all mobile users, [s1,...,s] = S, and the nulling vectors
{w;}E | (cf. (73) and (75) for the base station).

C. Downlink Case

In the downlink case, since the mobiles cannot cooperate with each other for decision feed-
back. Hence the VBLAST detection is impractical at receivers. However, we can apply ACD-DP
as introduced in Section IV-B to cancel out known interferences at the transmitter, i.e., the base
station. We can convert the downlink problem as an uplink one and exploit the downlink-uplink
duality as we have done in Section IV-B. Note that H = H* = I, i.e., the downlink and uplink
channels are the same! Consider the case where the uplink and downlink communications are
symmetric, i.e., for each mobile user, the QoS of the communications from the user to the base
station and the base station to the user are the same. After obtaining the spreading sequences
[S1,...,sr] for the mobile users, and the nulling vectors [wi,...,wr] used at the base station
for the uplink case, we immediately know that in the downlink case the spreading sequences
transmitted from the base station are exactly [wi,...,wy] and the nulling vectors used at the
mobiles are the spreading sequences, [si,...,sz], used in the uplink case. The only parameters
we need to calculate are gy, ...,qn (cf. (51)). Hence in this symmetric case, the base station only
needs to inform the mobiles their designated spreading sequences once in the two-way communi-
cations. Each mobile uses the same sequence for both data transmission in the uplink channel
and interference nulling in the downlink channel.

D. Further Remarks

The ACD scheme, which was originally motivated by MIMO transceiver designs, turns out to be
similar to the scheme of [9] in several aspects. Both schemes are based on the nonlinear decision
feedback operations. Hence both are optimal in terms of maximizing the channel throughput and
minimizing the overall input power. Both the GTD algorithm, on which the ACD scheme is based,
and the construction of the Hermitian matrix with prescribed eigenvalues and Cholesky values as
done in [9] rely on the Weyl-Horn theorem. However, our ACD scheme enjoys several remarkable
advantages over the scheme of [9]. First, note that if we obtain the GTD H = QRP*, where R
has the prescribed diagonal elements, then it follows immediately that A = P*H*HP = RR*
is the desired Cholesky decomposition. However, the information associated with Q is lost in
the Cholesky decomposition. Hence the nulling vectors used at the receivers of [9] cannot be
calculated explicitly as our ACD does (cf. (36)). Furthermore, the correlation matrix A is only
an intermediate result. To get the CDMA sequences, one has to decompose A = RR* explicitly.
The ACD scheme, however, can be used to obtain both the precoder (CDMA sequences), which
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are the columns of P, and the equalizer from Q simultaneously. Second, our ACD scheme is
a solution to the more general MIMO transceiver design problem. The Cholesky decomposition
algorithm provided in Appendix C of [9] is only applicable to the scenario where the singular values
are only of two values. Hence it is not applicable to the general design of MIMO transceivers.
The more general Cholesky factorization algorithm suggested in the proofs is computationally far
less efficient. Third, the ACD scheme has two implementation forms, i.e., ACD-VBLAST and
ACD-DP, which makes it applicable to both the downlink and uplink scenarios. Finally, the ACD
scheme provides insights that unify the CDMA sequence design problem as well as the precoded
OFDM communication problem as special cases of the MIMO transceiver design.

VII. CONCLUSIONS

Based on the recently developed GTD matrix decomposition algorithm, we have proposed the
ACD scheme utilizing the CSIT and CSIR. ACD can be used to decompose a MIMO channel into
multiple subchannels with prescribed capacities. The ACD scheme has two implementation forms.
One is the combination of a linear precoder and a minimum mean-squared-error VBLAST (MMSE-
VBLAST) detector, which is referred to as ACD-VBLAST, and the other includes a dirty paper
(DP) precoder and a linear equalizer followed by a DP decoder, which we refer to as ACD-DP.
Both forms of ACD are computationally very efficient. We have also determined the subchannel
capacity region such that a capacity lossless decomposition is possible. The applications of the
ACD scheme for MIMO communications with QoS constraints have been investigated. We have
also identified the problems of designing precoders for OFDM communications and designing
CDMA sequences as special cases in the unifying framework of MIMO transceiver designs. In
particular, we have shown that the CDMA sequence design problem in the uplink and downlink
scenarios can be solved using ACD-VBLAST and ACD-DP, respectively.

APPENDIX A
GENERALIZED TRIANGULAR DECOMPOSITION

We summarize the steps of the GTD algorithm as follows. To make it easier to distinguish
between the elements of the matrix R and the elements of the given diagonal vector r, we use R;;
to denote the (7, j) element of R and r; to denote the i-th element of r.

1. Let H = UAV* be the singular value decomposition of H, and suppose we are given r € CX
with r < o. Initialize Q =U,P=V, R=A, and k = 1.
2. Let p and ¢ be defined as follows:

p = arg miin{|Rii\ 1k <i <K, |Rii| > |rel}s
¢ = arg max{|Ry|:k <i <K, R <|ryl, i # p}.
In R, P, and Q, perform the following exchanges:

(Rik, Ri41,k41 Ryp, Ryq)

) <

(Rig—1k, Rik—16+1) < (Rig— 1,p,R1k 1q)
) (

(

(P:,k'; P:,k+1 x4 P. ,pa )
Qs Qupr1) ¢ 5P ,q)

3. Construct the matrices G; and Gg shown below:

- cd] 805 0 0 c —s Tk T
7% ]2 —809 07 0 d9 S c 0 vy (76)

(G3) (IFRWID)  (Gy) (RFD)

o .
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Column k
X X X X X X X X X X X X
X X X X X X X X X X
Row K X 0 0 O X X 0 O
, X0 0 X0 0
X 0 X 0
X X
* k * * k
n R( )I'I G, R( )nel

Fig. 4. The operation displayed in (76).

If |01] = |02] = |rk|, we take ¢ = 1 and s = 0; if 61| # |d2|, we take

[ Ire|> = |d2]? )
Cc = m and s = 1-— C2. (77)

Replace R by G5RG, replace Q by QGo, and replace P by PG;.
4. If k=K — 1, then go to Step 5. Otherwise, replace k by k£ + 1 and go to Step 2.
5. Multiply column K of Q by Rxk/rk; replace Rxx by rx. The product QRP* is the GTD
of H based on r.
To write Q, P explicitly, we define Q; = IIGg and Py = IIG; (cf. (76)). Then

H=UQQ...Q;_1CRP;_,...P}PIV*.

with
K-1 K-1
Q:U(H Q,)C and P:V(H Pi).
i=1 i=1
Here C is a K by K identity matrix with its Kth diagonal element replaced by Rk /rk. Finally,
note that if r is real-valued, then G and Gy are real, which implies R is real-valued and C = 1.
Figure 4 depicts the transformation from I*RMII to G;H*R(k)HGl. The dashed box is the
2 by 2 submatrix displayed in (76). The numerical stability of this algorithm is analyzed in [23].

In particular, we have shown that the division by the possibly small denominator in (77) is safe,
and the algorithm is stable. A Matlab implementation of our GTD algorithm appears in [23].

APPENDIX B
PROOF OF THEOREM V.1
Observe that for F = V&1/2, we have

K
tr (FF*) =) ¢; and HF =UA®'/% (78)
=1

Hence, /\%Fﬂ- = )\%{ﬂ-qﬁi for 1 <i< K, and

AGui = { 1+ 22,6, 1<i<K,

1, i> K.
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Since 1+ p; > 1, the last L — K inequalities in the multiplicative majorization condition in (60)
are implied by the single equality constraint in (61). Hence, the problem (60) reduces to (61)
where F = V&'/2 which gives an upper bound for the minimum in (60).

Let F = Up®'/2Q7 denote the singular value decomposition for any given F € CM+*L, Once
again, tr (FF*) is given by the sum in (78). By [21, Theorem 3.3.14], the singular values of the
product HF of two matrices are multiplicatively majorized by the product of the singular values
of H and F:

k k
1% > [ Mopsr 1<E<K. 19)
Taking log’s, we have
k k
> log(Midi) > Y log(Agpy), 1<k <K. (80)
i= i=1

By [21, Lemma 3.3.8]) and (80),

k

Z f(lOg )\H z¢z

i=1

]Og >\HFZ y 1§k§K, (81)

||M?r

whenever f is a real-valued, increasing convex function. The function f(t) = log(ef + 1) is convex
since its second derivative is positive. Making this choice for f in (81) and exponentiating both

sides, we obtain:
k k

H(/\%I,iﬁﬁi +1) > H(/\HFz 1), 1<k<K. (82)

i=1 i=1
Since F is feasible in (60),

:?r
:?r

()‘HFZ 1) > (pi+1), 1<k<K,

~.
Il
—
~.
Il
—

()‘HFZ 1) = (pi +1).

.:h
—

-
Il
—
-
Il
—

Combining this with (82), we get

:?r

Mg +1) > J[i+1), 1<k<K,

ZIZ(I Zzl
[[OGi+1) > [[ei+ D). (83)
i=1 =1

Since )\fﬁqﬁi +1 is the square of the i-th singular value of the augmented matrix G, corresponding
to the choice Up, we conclude that F = V&1/2 satisfies all the inequality constraints in (60). If
the inequality (83) is strict, then ¢x should be decreased in order to satisfy the equality constraint
n (61). Since decreasing ¢ only lowers tr(FF*), we deduce that the minimum in (60) is achieved
by a matrix of the form F = V®!/2. If F = V&'/? is optimal in (60), then so is F = V&'/2QT
whenever € has K orthonormal columns (since the constraints are satisfied and the value of the
cost does not change). We now make the choice for Q given in Theorem IV.1. That is, if Q;R JP}
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is the GTD of J in (28) where ® is a solution of (61), then € is the matrix formed by the first
K columns of P}. For this choice of €, the constraints of (59) are satisfied. As noted earlier, the
minimum in (59) can be no smaller than the minimum in (60). Since this choice for F yields the
same cost in both (59) and (60), we conclude that F = V&®!/2Q7 is optimal in (59).

ArPENDIX C
ProoOF or LEMMA V.3

First suppose that v, > 1/A?. By the arithmetic/geometric mean inequality, the problem

l l l
min » ¢ subject to [[wi>][B:n ¥ >0, (84)

has the solution 1; = 7y, 1 < ¢ < [. Since Ag,; is a decreasing function of 4 and v > 1 /)‘%I,i’
we conclude that 1; = -, satisfies the constraints ; > 1/ /\%I’Z- for 1 < ¢ <. Since [ attains the
maximum in (67),

v > 1] B
i=1
for all £ < [. Hence, by taking ¢; = ; for 1 < ¢ <[, the first [ inequalities in (63) are satisfied,

with equality for £ = [, and the first [ lower bound constraints ; > 1/ )\%Li are satisfied.
Let 1* denote any optimal solution of (63). If

l !
[Tvr =115 (85)
=1 =1

then by the unique optimality of 1; = v;, 1 <7 <[, in (84), and by the fact that the inequality
constraints in (63) are satisfied for k& € [1,{], we conclude that ¢ = v, for all < € [1,{]. On the
other hand, suppose that

l l
e >118= (86)
=1 =1

We show below that this leads to a contradiction; consequently, (85) holds and v} =, for i € [1,1].

Define the quantity
z 11
Vx = (H d’:) .
i=1

By (86) 7« > ;- Again, by the arithmetic/geometric mean inequality, the solution of the problem

l l
min ) ¢ subject to [[vi 2L, ¥ >0, (87)

i=1 =1

is 9; = 4 for i € [1,1]. By (86), v« > 7, and v satisfies the inequality constraints in (63) for
ke [1,1].
Let M be the first index with the property that

M M
IT¢ =118 (88)
i=1 =1
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Such an index exists since ¥* is optimal, which implies that

K K
ITv =115
i=1 i=1

First, suppose that M < j, where j is the break point given in Lemma V.2. By complementary
slackness, p; = 0 and ] — 47, = p; for 1 <4 < M. We conclude that ¢; = v, for 1 <4 < M.

By (88) we have
M

w=1]8:

=1

M 1/M
(H ,Bz') =% >N,
i=1

which contradicts the fact that [ achieves the maximum in (67).

It follows that

In the case M > j, we have ¢; = 7, for 1 < ¢ < j. Again, this follows by complementary
slackness. However, we need to stop when 7 = j since the lower bound constraints become active
for i > j. In Lemma V.2, we show that 9] > w;f =y, for ¢ > j. Consequently, we have

M M
[I6:=1]w =" > 7"
i=1

i=1
Again, this contradicts the fact that [ achieves the maximum in (67). This completes the analysis
of the case where vy, > 1/ )‘%I,l'
Now consider the case y; < 1/ A%I,l' By the definition of 7;, we have

K\ VK K
V> (H ,Bi) or v >]]5: (89)
i1 i1

If j is the break point described in Lemma V.2, then 47 > 97 for all ¢; it follows that

K

ITv: > @)™ (90)

i=1

Since the product of the components of ¥* is equal to the product of the components of 3, from
(89) and (90) we get

K K K
W8 =]]wi = ()" .
=1 =1

Hence, v, > 47 > 1/)\%{’]- > 1/)\%“ for all 4 < j. In particular, if [ < j, then vy > 1/)\%{71, or,l >j

when v, < 1//\%”. As a consequence, 1] = )\%
’ H,l
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