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Abstract— The V-BLAST (vertical Bell Labs lay-
ered Space-Time) architecture involves independent cod-
ing/decoding per antenna (layer) with equal rate and power
per antenna and a fixed order of nulling/canceling decoding
but is known to suffer from poor performance; for exam-
ple, in a multi-input multi-output (MIMO) Rayleigh fading
channel with Mt transmit and Mr receive antennas (Mr ≥
Mt), the diversity-multiplexing gain (D-M) tradeoff is just
(Mr−Mt +1)(1−r/Mt) for r ∈ [0, Mt]. There are two remedies
available, namely, (i) channel-dependent ordered decoding
at the receiver and (ii) allocation of rates and powers across
the transmit antennas. However, the former doesn’t im-
prove the D-M tradeoff curve and while the latter does (with
maximum diversity gain Mr and maximum multiplexing gain
Mt), its tradeoff curve is still significantly inferior compared
to the D-M tradeoff curve of the optimum (unconstrained)
MIMO architecture. In this two-part paper, it is shown that
a dramatically better D-M tradeoff and error (e.g. outage)
probability can be obtained if the two remedies, i.e., ordered
BLAST decoding and rate/power allocation, are judiciously
combined. Indeed, a framework is developed for jointly de-
signing channel-dependent ordered decoding at the receiver
and decoding order-dependent rate/power allocation at the
transmitter. The framework encompasses a large class of
new spatial multiplexing architectures (SMAs). In this part,
an upper bound to the D-M tradeoff for this class is obtained
and found to be quite close to the optimal D-M tradeoff of
the MIMO channel. Two special SMAs are proposed corre-
sponding to two different decoding orderings. One is called
the Norm ordering Rate Tailored SMA (NRT-SMA), and
the other is called the Greedy ordering Rate Tailored SMA
(GRT-SMA). The latter is shown to have the D-M trade-
off equal to the upper bound and is hence optimal in D-M
tradeoff among the proposed class of SMAs. Compared to
the traditional V-BLAST architecture, the only added com-
plexity of these SMAs is due to (i) feeding back the decoding
order information ((≤ log2(Mt!) bits) per channel realization,
and (ii) applying rate and power allocation according to a
pre-computed lookup table.

Keywords—MIMO, V-BLAST, diversity gain, spatial mul-
tiplexing gain, tradeoff, rate tailored, multi-access channel.

I. Introduction

Multiple-input multiple-output (MIMO) channels have
well-known advantages over their single-input single-
output (SISO) counterparts, i.e., much higher spectral ef-
ficiency and greatly improved diversity gain [1][2]. A lot
of work has been done in the past decade to exploit the
advantages of MIMO channel, among which the V-BLAST
(vertical Bell Labs layered Space-Time) architecture [3] has
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gained popularity due to its simplicity and high rate per-
formance. V-BLAST applies independent scalar coding to
multiple substreams which are then spatially multiplexed
and transmitted through different transmit antennas simul-
taneously. Hence, V-BLAST can be regarded as a spa-
tial multiplexing architecture (SMA). For the standard V-
BLAST, the spatially multiplexed substreams (or layers)
have the same rate and power, and at the receiver the
substreams are decoded sequentially using a decision feed-
back equalizer (DFE) [4][5]. The substream decoded first is
subject to the interference from all the other substreams,
and therefore tends to have the lowest output signal-to-
interference-and-noise ratio (SINR). Moreover, the erro-
neously decoded substream causes more errors in the sub-
sequently decoded substreams. Hence, the error proba-
bility of the first decoded substream dominates the over-
all system error probability. In a Rayleigh fading channel
with Mt transmit antennas and Mr receive antennas, the
D-M tradeoff curve is just (Mr − Mt + 1)(1 − r/Mt) for
r ∈ [0,Mt] (V-BLAST requires Mr ≥ Mt) [6]. In particu-
lar, the diversity gain of the standard V-BLAST is hence
only Mr−Mt+1. Two major remedies have been proposed
to improve the performance of V-BLAST.

The first remedy is to decode the substreams in an or-
der that is determined by the channel realization; in par-
ticular, the ordering rule proposed originally in [7] was
popularized in [3] known widely as the V-BLAST order-
ing. The V-BLAST ordering algorithm is proven in [3] to
maximize the smallest layer gain among all the Mt! or-
derings. The V-BLAST ordering can be efficiently imple-
mented using a recursive algorithm [8][9]. A simpler sub-
optimal column-norm rule was proposed in [10] which was
analyzed in [11] to show no improvement in diversity gain.
An optimal order was also suggested in [11] to minimize
overall error probability (the probability that not all sym-
bols transmitted are detected correctly) which is distinct
from the V-BLAST ordering but was seen to give rise to
a very minor improvement compared to the V-BLAST or-
dering. We have recently proved in [12] that no ordering,
including the V-BLAST ordering, can improve the D-M
tradeoff (and hence diversity gain) of the V-BLAST scheme
(note that [6] provides the upper bound (Mr−1)(1−r/Mt)
which is loose), although the V-BLAST ordering does yield
10 log10 Mt dB coding gain for zero forcing V-BLAST (ZF-
VB) [12] in the high SNR regime.

The second remedy was proposed in [11], [13] which sug-
gests that the symbols of the various transmit antennas
be decoded in a pre-determined fixed order but that the
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rates and powers be optimized across the transmit anten-
nas to minimize the exact overall error probability of the
system, given the constraints on total rate and total power.
In the sequel, we refer to this scheme as fixed order Rate
Tailored V-BLAST (fixed order RT-VB). The fixed order
RT-VB has maximal diversity gain of Mr because with in-
creasing signal-to-noise rate (SNR) for a fixed total rate,
the optimum transmit powers and rates are such that no
rate or power is assigned to an increasing number of trans-
mit antennas. In the D-M tradeoff framework, rate/power
allocation reduces to just multiplexing gain allocation and
it was shown in [6] that an improved tradeoff curve results
but which is still much poorer than the D-M tradeoff curve
of the optimum (unconstrained) architecture.

Besides the above two remedies, some other work on im-
proving the performance of V-BLAST is available in the
literature. For example, in [14], the authors propose to
apply turbo decoding and exploit soft information on each
layer. Their method yields some coding gain, but no di-
versity gain improvement. More recently, the authors of
[15] propose another modification of V-BLAST, namely,
the so-called space-time active rotation (STAR) method.
The STAR method uses only Mt − 1 out of Mt trans-
mit antennas and rotates the active set over time. It is
shown numerically that STAR can be quite close to the
V-BLAST scheme using the maximum likelihood (ML) re-
ceiver in terms of outage probability.

With independent coding per multiplexed data sub-
stream, the MIMO system is in fact equivalent to a mul-
tiple access channel (MAC), where the Mt transmit an-
tennas amount to Mt users with no cooperation between
them [13]. For a fading MAC channel, the fundamental
diversity-multiplexing (D-M) gain tradeoff is given in [13],
[16], which is significantly inferior to that of a single user
MIMO channel [6]. Assuming no cooperation between the
transmitter and the receiver, the performance limit of any
modified V-BLAST is given in [13] and [16]. In particular,
note the maximal diversity gain of any modified V-BLAST
can be no greater than Mr. To have diversity gain more
than Mr, one may resort to applying coding across both
the spatial and the temporal domain as in the D-BLAST
(diagonal Bell Labs layered Space-Time) architecture [17],
LAST (LAttice Space-Time) coding [18], and DLL (Diag-
onally Layered Lattice) schemes [19] do. However, these
codes need either short and powerful error control coding
(in the D-BLAST case), or a computationally expensive
lattice decoder (in the LAST and DLL codes). Moreover,
the concatenation of the inner space-time code and the
outer error control code is much more complicated than in
V-BLAST.

In this two-part paper, a different approach is proposed
to achieve a dramatic D-M tradeoff and error probability
improvement. We develop a framework of jointly design-
ing channel-dependent ordered decoding at the receiver and
decoding ordering-dependent rate/power allocation at the
transmitter. The receiver feeds a few (≤ log2(Mt!)) bits
from receiver back to the transmitter with regard to the
decoding ordering. The transmitter exploits this informa-

tion to assign rates and powers to each individual transmit
antenna. The two key problems then are to (a) suggest or-
dering rules and (b) propose for each rule a method for al-
locating rate/power to the antennas. Problem (b) is solved
in Part II of this paper via the analysis of the error proba-
bility per layer according to a minimax optimality criterion
[20]. As for problem (a), note that an ordering rule, which
is a map from channel matrices into the set of permuta-
tion matrices, specifies a member of the proposed class of
SMAs. There are uncountably many ordering rules but we
suggest two interesting ones in this two-part paper; one is
a norm ordering rule which corresponds to decoding the
layers in the increasing order of their respective channel
column norms (i.e., the transmit antenna with the least
channel column norm is decoded first), and the second is a
greedy ordering rule that is determined through a sequence
of recursively defined Householder transformations. The
SMAs based on the two orderings are referred to as Norm
ordering Rate Tailored SMA (NRT-SMA) and Greedy or-
dering Rate Tailored SMA (GRT-SMA), respectively.

In this paper, the NRT-SMA and GRT-SMA are ana-
lyzed in terms of diversity-multiplexing (D-M) gain trade-
off [6]. We show that while both can achieve the maxi-
mal diversity gain MrMt

1, a much more significant result
is that the D-M gain tradeoff of the GRT-SMA is actu-
ally quite close to the optimal tradeoff of the single-user
MIMO channel. We also establish an upper bound to the
D-M gain tradeoff of the class of SMAs, which turns out to
be exactly the D-M tradeoff of GRT-SMA. This result ele-
vates the status of GRT-SMA from merely achieving very
good performance to that of an optimal SMA among the
proposed class of SMAs in terms of D-M tradeoff. However,
our analysis does not preclude the existence of a SMA with
the same D-M tradeoff but better coding gain performance
than that of GRT-SMA.

The major advantage of the class of SMAs over D-
BLAST [17], the LAST code [18], and the DLL code [19] is
that the SMAs admit simple independent scalar coding for
the multiplexed substreams, which reduces the implemen-
tation complexity significantly. For instance, for the SMAs
the inner detector can be easily concatenated with outer
error control coding. Compared to the classic V-BLAST,
the only added complexity is (i) feedback of a few bits of
decoding ordering information per channel realization, and
(ii) allocating rates and powers across the transmit anten-
nas according to a lookup table. The table is obtained
offline as we will discuss in detail in Part II of this paper
[20].

The remainder of this paper is organized as follows. Sec-
tion II introduces the channel model and some useful pre-
liminary results. Section III introduces the basic concept
of the class of new SMAs and analyzes their D-M gain
tradeoffs. Section IV studies ordering rules and ordered
QR decompositions, including two special cases, i.e., the

1this should not be not surprising since allocating the total rate and
power to the transmit antenna with the largest channel norm or even
to the transmit-receive antenna pair with the largest channel gain,
through log Mt bits of feedback, will achieve this.
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Norm QR decomposition and Greedy QR decomposition.
Furthermore, we establish the upper bound to the diversity
gains of the layers obtained by any ordered ZF-VB decoder,
which shows that the ZF-VB decoder with greedy ordering
achieves the upper bound. Because the proofs of the theo-
rems in Section IV are rather technical, we relegate them
to Section V.

II. Channel Model and Preliminaries

A. Channel Model

We consider a communication system with Mt transmit
and Mr receive antennas in a frequency flat fading channel.
The sampled baseband signal is given by

y = HΠW
1
2 s + z, (1)

where s ∈ CMt×1 is the information symbols, W is a
diagonal matrix with diagonal entries {wi}Mt

i=1 denoting
the power allocation, Π is a channel-dependent permuta-
tion matrix corresponding to the decoding ordering, and
y ∈ CMr×1 is the received signal and H ∈ CMr×Mt is
the independent, identically distributed (iid) Rayleigh flat
fading channel matrix. We assume that z ∼ N(0, σ2

zIMr )
is the circularly symmetric complex Gaussian noise where
IMr denotes an identity matrix with dimension Mr. With-
out loss of generality, we normalize s such that E[ss∗] = I,
and denote W ,

∑Mt

i=1 wi as the total input power. Here
E[·] stands for the expectation, and (·)∗ is the conjugate
transpose. The input SNR is defined as ρ = W

σ2
z
. The in-

dividual input SNR of the ith substream is ρi = wi

σ2
z
, i =

1, 2, · · · ,Mt, and
∑Mt

i=1 ρi = ρ.
Different from the V-BLAST scheme, the class of SMAs

make no assumption with regard to the numbers of trans-
mit and receive antennas. Denote N , min{Mt,Mr}. As
we will see later, the rate tailored SMAs only select K ≤ N
transmit antennas for use based on the information on de-
coding ordering.

B. Order Statistics

We reproduce some useful results on order statistics from
[21].

Definition II.1: If the random variables X1, X2, · · · , Xn

are rearranged in ascending order of magnitude and then
written as X(1) ≤ X(2) ≤ · · · ≤ X(n), we call X(i) the ith
order statistic (i = 1, 2, · · · , n).

Lemma II.2: Suppose X1, X2, · · · , Xn are n iid variates
with probability density function (pdf) f(x) and cumula-
tive distribution function (cdf) F (x). Then the ith order
statistic X(i) has pdf

fX(i)(x) =
1

β(i, n− i + 1)
F i−1(x)[1− F (x)]n−if(x),

where β(a, b) =
∫ 1

0
ta−1(1− t)b−1dt.

The following is an immediate corollary of Lemma II.2.
Corollary II.3: Suppose that X1, · · · , Xn−1 are statisti-

cally independent and are uniformly distributed over the

unit interval (0, 1). Then the pdf of the ith order statistic
is

fX(i)(x) =
1

β(i, n− i)
xi−1(1− x)n−i−1 0 ≤ x ≤ 1. (2)

C. Two Useful Theorems

The following theorem easily follows from [6].
Theorem II.4: Consider the iid Rayleigh fading channel

H given in (1) with ordered singular values λ1 ≥ λ2 ≥
· · · ≥ λN > 0. Then

lim
ε→0+

logP(λ2
i < ε)

log ε
= (Mt−i+1)(Mr−i+1), 1 ≤ i ≤ N.

(3)
Proof: Note that λi in [6, eq. (15)] is actually λ2

N−i+1

here. We can rewrite [6, eq. (15)] as

lim
ε→0+

logP(λ2
n < εbn , ∀n)
log ε

=
N∑

n=1

(|Mr−Mt|+2(N−n+1)−1)bn,

(4)
where bn ≥ 0, ∀n. Observe that the event {λ2

i < ε} =
{λ2

n < ε, i ≤ n ≤ N} corresponds to

bn =
{

0 1 ≤ n ≤ i− 1
1 i ≤ n ≤ N

. (5)

Inserting (5) into (4), we obtain (3).
The following theorem was established in [22] and will

be used in Theorem IV.2.
Theorem II.5: Let H ∈ CMr×Mt have rank N with sin-

gular values λ1 ≥ λ2 ≥ . . . ≥ λN > 0. There exists an
upper triangular matrix R ∈ CN×N and matrices Q and
P with orthonormal columns such that H = QRP∗ if and
only if the diagonal elements of R satisfy

n∏

i=1

|r[ii]| ≤
n∏

i=1

λi, for 1 ≤ n < N, and
N∏

i=1

|rii| =
N∏

i=1

λi,

(6)
where |r[ii]| is the ith largest entry among {|rii|}N

i=1, the
absolute values of the diagonal elements of R.

III. A Class of Spatial Multiplexing
Architectures

In this section, we introduce the basic concept and fea-
tures of a class of new SMAs. We also derive the D-M gain
tradeoffs.

A. Basic Concept

At the receiver side of the SMAs, an ordered V-BLAST
decoder is used, which applies the procedure of successive
interference nulling and decision feedback equalization. In
the successive interference nulling step, the decoder sup-
presses the interference by the minimum mean-squared-
error (MMSE) or zero-forcing (ZF) criterion, which are
called MMSE-VB and ZF-VB, respectively. In this pa-
per, we constrain the receiver to be the ZF-VB which
can be concisely represented by the QR decomposition
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H = QR, where Q is an Mr×N matrix with its orthonor-
mal columns being the ZF nulling vectors, and R is an
Mt × Mt upper triangular matrix with positive diagonal
if Mt = N = min{Mt,Mr}. If Mt > Mr = N , then the
firsts N columns of R form an upper triangular matrix. In
this case, the last Mt −N transmit antennas are not used.
Correspondingly, the ordered ZF-VB decoder can be rep-
resented by applying the QR decomposition to H with its
columns permuted, i.e., HΠ = QR where Π ∈ RMt×Mt is
a permutation matrix. If Mt > N , then only N transmit
antennas corresponding to the first N columns of HΠ are
used. Correspondingly, the trailing Mt−N diagonal entries
of the diagonal matrix W in (1) are zeros. Hence the ef-
fective channel matrix is pruned to be H̃ , HΠ̃ ∈ CMr×N

where Π̃ is the submatrix consisting of the first N columns
of Π. For the sake of notational simplicity, we still use
H̃ = QR to denote the QR decomposition.

Now we can rewrite (1) as

y = QRW
1
2
1 s + z. (7)

where W1 ∈ RN×N is the leading submatrix of W given in
(1) (W1 = W if Mt ≤ Mr). Multiplying Q∗ to both sides
of (7), which is effectively the nulling step, yields

ỹ = RW
1
2
1 s + z̃, (8)

ỹ = Q∗y and z̃ = Q∗z. The sequential signal decoding,
which involves the decision feedback, is as follows:

for i = N : −1 : 1
ŝi = Q

[(
ỹi −

∑N
j=i+1 rij

√
wj ŝj

)
/rii

]

end

where rij is the (i, j)th entry of R and Q[·] stands for
mapping to the nearest point in the symbol constellation.
Ignoring the error-propagation effect for now, we see that
the MIMO channel is decomposed into N parallel layers

ỹi = rii
√

wisi + z̃i, i = 1, 2, · · · , N. (9)

Because E[z̃z̃∗] = σ2
zI, the output SNR of the ith layer is

r2
iiwi/σ2

z = r2
iiρi. Hence given the input SNR, the output

SNRs of the substreams are completely determined by the
diagonal entries of the upper triangular matrix R which in
turn depend on the permutation matrix Π.

With fixed order decoding, Π does not depend on H and
it is well-known that the diagonal elements of R are statis-
tically independent with χ2

2(Mr−i+1) distribution (see, e.g.,
[23]). The diversity gain of a SISO channel only depends
on the distribution of the channel gain around zero [24].
From this fact, the diversity gain of the ith layer is

Di = lim
ε→0+

logP(r2
ii < ε)

log ε
= Mr − i + 1, for 1 ≤ i ≤ N,

(10)
where P(E) stands for the probability of the event E . For
ordered decoding, Π is a function of H and the distribu-
tions of r2

ii’s are much more complicated. We shall address
this issue in Section IV.

Now we have seen that with the ZF-VB decoder, the
MIMO channel is converted into N parallel SISO channels
with different channel gains. Under the overall constraints
of data rate and input power, the transmitter attempts to
optimally allocate the rates and powers over the N SISO
channels to minimize the system error probability. Note
that the exact values of the channel gains {rnn}N

n=1 are
unavailable to the transmitter. Instead, the transmitter
uses the a priori information on the statistics of {r2

nn}N
n=1

to determine the rates and powers allocated to K ≤ N sub-
streams. Given the decoding ordering information fed back
from the receiver, the transmitter maps the substreams to
transmit antennas. A major difficulty here is that in many
cases the exact pdfs of {r2

nn}N
n=1 are intractable due to the

channel-dependent ordering. This problem is solved in Part
II of this paper.

In summary, the transmitter determines, based on the
statistics of the layer gains, the rates and powers allo-
cated to the individual substreams which are independently
coded with SISO error control codes. Using the channel
state information, the receiver determines the decoding or-
dering, and then feeds it back to transmitter. Using the
ordering information, the transmitter maps the substreams
to the transmit antennas. Finally, the receiver applies an
ordered ZF-VB decoder to decode the substreams sequen-
tially. This framework encompass various new SMAs based
on different decoding ordering rules.

B. Diversity-Multiplexing Tradeoff Analysis

We analyze the D-M gain tradeoff of the class of SMAs in
the asymptotically high SNR regime. Denote R(ρ) as the
data rate of any communication scheme (a family of codes
parameterized by SNR) with input SNR ρ. The diversity
gain and multiplexing gain are defined as follows [6].

Definition III.1: A scheme is said to have multiplexing
gain R and diversity gain D if the data rate R(ρ) satisfies

lim
ρ→∞

R(ρ)
log ρ

= R, (11)

and the average error probability Pe(ρ) satisfies

− lim
ρ→∞

log Pe(ρ)
log ρ

= D. (12)

The tradeoff between diversity gain and multiplexing
gain is denoted by D(R) which is always a non-increasing
function. For the iid Rayleigh fading channel given in (1),
the optimal D-M gain tradeoff is a piece-wise linear curve
obtained by connecting the following N + 1 points [6]

{(n, (Mr − n)(Mt − n))}N
n=0 . (13)

The more recent work extends the D-M tradeoff frame-
work to the diversity-multiplexing-delay tradeoff [25].
However, this extended framework is not relevant here since
our proposed architecture does not require retransmissions
and hence does not incur delay.

The optimal D-M gain tradeoff of a scalar fading channel
with maximal diversity gain D is

D(R) = D(1−R), 0 ≤ R ≤ 1, (14)
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which can be achieved using uncoded quadrature amplitude
modulation (QAM) [26]. Suppose we have N scalar layers
with diversity gains Di, i = 1, · · · , N . The optimal D-M
gain tradeoff of the ith layer is Di(Ri) = Di(1−Ri), where
Ri is the multiplexing gain of the ith layer.

Because the class of SMAs apply independent scalar cod-
ing to each layer, as input SNR ρ increases, the error prob-
ability of the layer with the smallest diversity gain domi-
nates the overall error probability of the system. To opti-
mize the system performance, the rates, and therefore the
multiplexing gains, should be tailored according to the fol-
lowing optimization problem:

D(R) = maxRi mini:Ri>0 Di(1−Ri)
subject to 0 ≤ Ri ≤ 1, 1 ≤ i ≤ N,∑N

i=1Ri = R,
(15)

Denote I , {i : Ri > 0} the set of the layers in use.
Then we observe that at the optimal solution to (15), the
multiplexing gains Ri’s must be such that Di(1−Ri) = D
for all i ∈ I. Otherwise, if there exists i ∈ I such that
Di(1−Ri) < Dj(1−Rj) for ∀ j ∈ I and j 6= i, then we can
always reduce Ri to Ri−δ (note that Ri > 0) and increase
Rj to Rj + δ for some j 6= i (note that Rj < 1) such that
the constraints are still satisfied but the cost function is
increased from D to D+Diδ, which leads to a contradiction.
From the observation that Di(1 − Ri) = D, ∀ i ∈ I, we
have Ri = 1 − D

Di
∀ i ∈ I. According to the constraint∑

i∈I Ri = R, we have
∑

i∈I(1− D
Di

) = R. Thus

D =
K −R∑
i∈I D−1

i

(16)

where K = |I| is the cardinality of the finite set I, i.e., the
number of transmit antennas in use. Hence we can simplify
(15) to be

D(R) = max
I ⊆ {1, 2, · · · , Mt}

|I| = K

K −R∑
i∈I D−1

i

. (17)

If we assume, without loss of generality, that Di’s are in
non-increasing order, then the set I which leads to the
maximal D must be I = {1, 2, · · · ,K}, i.e., the K layers
with the highest diversity gains are used. It follows from
(17) that

D(R) = max
R ≤ K ≤ N

K ∈ Z

K −R∑K
i=1 D−1

i

. (18)

It is easily seen that D(N) = 0 and D(0) = D1. In the open
interval R ∈ (0,Mt), D(R) is a piecewise linear function
and the inflections (changes of derivative) occur when the
number of transmit antennas in use changes by one, which
happens if

K −R∑K
i=1 D−1

i

=
K + 1−R∑K+1

i=1 D−1
i

, 1 ≤ K ≤ N − 1, (19)

or the overall multiplexing gain

R = K − DK+1

K∑

i=1

D−1
i . (20)

D−M Tradeoff of SMA
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Fig. 1. Visualization of the D-M gain tradeoff of the SMAs given in
(22).

Substituting (20) into (18) we get the diversity gains at the
inflection points:

D(R) = DK+1, 1 ≤ K ≤ N − 1. (21)

Hence the achievable D-M tradeoff function can be repre-
sented by a piecewise linear curve connecting the following
N + 1 points

(0, D1),

{(
K − DK+1

K∑

i=1

D−1
i ,DK+1

)}N−1

K=1

, and (N, 0).

(22)
Figure 1 visualizes the D-M gain tradeoff given in
(22), which also reveals the fact that the coordinate(

k − 1− Dk

k−1∑

i=1

D−1
i , Dk

)
is exactly where the line y = Dk

crosses the line connecting
(

k − 2− Dk−1

k−2∑

i=1

D−1
i , Dk−1

)
and (k − 1, 0).

This analysis suggests that to improve the overall system
D-M tradeoff, the decoder should apply ordering which
yields layers with large Di’s.

There is an interesting relationship between the proposed
SMAs and the system with transmit antenna selection. In-
deed, a V-BLAST system with transmit antenna selection
(see, e.g., [27]) can be regarded as a special SMA which
allocates equal rate to a subset of transmit antennas and
zero rate to the rest. However, such an SMA is clearly
suboptimal due to the equal rate constraint.

It is worthwhile noting that the error propagation effect
can be safely ignored in the D-M tradeoff analysis. The
reason is as follows. By the union bound the overall prob-
ability of error is upper bounded by the sum of the error
probabilities of the K individual layers, which is further
upper bounded by K times of the error probability of the
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worse layer. However, our proposed SMA carefully allo-
cates rates to the layers such that all of them have the same
diversity gain. Therefore, error propagation only causes
some coding gain loss rather than diversity gain loss. Fi-
nally, we remark that power allocation does not appear in
the above analysis because at asymptotically high SNR, it
only influences the coding gain performance of the system.

IV. Ordering Rules and Ordered QR
decompositions

We have seen in Section III that members of the pro-
posed class of SMAs are decided by the decoding ordering
rule which in turn influences the layer gains. It also fol-
lows from the D-M analysis that a good decoding ordering
should yield layers with large diversity gains ({Di}N

i=1). In
the next we study two special ordering rules, namely, the
norm ordering rule and greedy ordering rule. The QR de-
compositions with the two rules are referred to as Norm
QR and Greedy QR decomposition, respectively.

A. Norm QR Decomposition

The procedure of the Norm QR decomposition is as fol-
lows.
(i) Calculate the Euclidean norms {‖hi‖}Mt

i=1 where hi is
the ith column of H.
(ii) Find permutation matrix Π such that the column
norms of the permuted matrix HΠ, from the left to the
right, are in non-increasing order.
(iii) Apply the standard QR decomposition to the per-
muted matrix HΠ = QR.

Given the iid Rayleigh assumption of H, we have derived
the pdfs of all the squared diagonal elements of R, {r2

ii}N
i=1.

Theorem IV.1: Suppose HΠ = QR is the Norm QR
decomposition of H given in (1). Then the pdf of r2

11 is

fr2
11

(x) =
1

Mt
· x

Mr−1e−x

(Mr − 1)!

(
1− e−x

Mr−1∑

k=0

xk

k!

)Mt−1

, x > 0.

(23)
The pdfs of other diagonal elements are

fr2
ii
(x) =

xMr−ie−Mtx

β(Mr − i + 1, i− 1)β(Mt + 1− i, i)(Mr − 1)!

×
∫ ∞

0

wi−2e−Mtw

( ∞∑

k=Mt

(x + w)k

k!

)Mt−i

(24)

(
Mt−1∑

k=0

(x + w)k

k!

)i−1

dw, x > 0, (25)

for i = 2, · · · , N . Moreover,

lim
ε→0+

logP(r2
11 < ε)

log ε
= MtMr, (26)

and

lim
ε→0+

logP(r2
ii < ε)

log ε
= Mr − i + 1, i = 2, · · · , N. (27)

In other words, for the ZF-VB decoder based on the norm
ordering rule, the diversity gain of the ith layer is

Di =
{

MrMt i = 1
Mr − i + 1 2 ≤ i ≤ N.

(28)

Proof: We relegate the proof to Section V-A.
Given Mt and Mr, we can simplify the pdf (25) using

Mathematica TM.
Recall that the ith layer of unordered V-BLAST equal-

izer has diversity gain of Mr − i + 1. Theorem IV.1 shows
that Norm QR can significantly increase the diversity gain
of the first layer. However, no diversity gain improvement
is achieved for the other layers. To further improve layer
diversity gains, we turn to the Greedy QR decomposition.

B. Greedy QR Decomposition

The Greedy QR decomposition consists of N recursive
steps. We only elaborate the first step. The subsequent
steps would be obvious given the first one.

In the first step, we go through the following procedures.
(i) Calculate Euclidean norms {‖hi‖}Mt

i=1.
(ii) Permutate h1 and hj where j = arg max1≤i≤Mt

{‖hi‖}.
This operation can be represented by H1 = HΠ1 with Π1

being the permutation matrix. (If j = 1, Π1 degrades to
be IMt)
(iii) Apply a Householder matrix Q1 to transform the first
column of H1 to a scaled e1, where e1 is the first column
of IMr .
The procedure (i–iii) can be illustrated by




× × × ×
× × × ×
× × × ×
× × × ×




Q∗1HΠ1−−−−−→




r11 × × ×
0 × × ×
0 × × ×
0 × × ×


 .

(29)
Note that r11 = max{‖hi‖, 1 ≤ i ≤ Mt}. In the next step,
the same procedures are applied to the trailing (Mr − 1)×
(Mt − 1) submatrix on the right hand side of (29), which
yields a permutation matrix Π2 and a Householder matrix
Q2. After N recursive steps, we obtain the desired QR
decomposition R = Q∗HΠ, or equivalently,

HΠ = QR (30)

where Π = Π1Π2 · · ·ΠN and Q = Q1Q2 · · ·QN (QN =
I if Mt ≥ Mr = N). In summary, at the ith step this
ordering algorithm “greedily” attempts to make the ith
diagonal element of R as large as possible. 2

Note that Norm and Greedy QR decompositions yield
the same r2

11 whose pdf is given in (23). For Greedy QR
decomposition, the pdfs of {r2

ii}N
i=2 are unavailable. How-

ever, we have informative bounds on {r2
ii}N

i=1.
Theorem IV.2: Consider a matrix H ∈ CMr×Mt with

nonzero singular values λ1 ≥ λ2 · · · ≥ λN > 0. Let

2The Greedy QR decomposition is not new. The built-in Matlab
function is [Q,R,Π] = QR(H).
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HΠ = QR be the Greedy QR decomposition. Then
∑N

j=i λ2
j

Mt − i + 1
≤ r2

ii ≤ λ2
i

i−1∏

j=1

(Mt − j + 1), i = 1, 2, · · · , N.

(31)
Proof: The lower bound was proven in [28], and we

omit it here. We prove the upper bound.
We first assume that Mr ≥ Mt = N . Then H = QRΠT .

It follows from Theorem II.5 that

i∏

j=1

r2
jj ≤

i∏

j=1

λ2
j , 1 ≤ i ≤ N. (32)

It follows from the proven lower bound that r2
ii ≥ λ2

i

Mt−i+1 .
Hence

i−1∏

j=1

r2
jj ≥

i−1∏

j=1

λ2
j

Mt − j + 1
. (33)

Combining (33) and (32) yields

r2
ii ≤ λ2

i

i−1∏

j=1

(Mt − j + 1), i = 1, 2, · · · , N. (34)

Now we consider the case Mt > Mr. Denote R̃ ∈ CN×N

the submatrix consisting of the first N columns of R. Then
H̃ , QR̃ is also a submatrix of H with singular values
λ̃1 ≥ λ̃2 · · · ≥ λ̃N ≥ 0. According to the same argument
which leads to (34), we can prove that

r2
ii ≤ λ̃2

i

i−1∏

j=1

(Mt − j + 1), i = 1, 2, · · · , N. (35)

Furthermore, because HH∗ º H̃H̃∗, 3 we have λ2
i ≥ λ̃2

i for
∀ i [29, Corollary 4.3.3]. Hence

r2
ii ≤ λ2

i

i−1∏

j=1

(Mt − j + 1), i = 1, 2, · · · , N, (36)

also hold for Mt > Mr. The theorem is proven.
It follows from the lower bound in (31) that

lim
ε→0+

logP(r2
ii < ε)

log ε
≥ lim

ε→0+

logP(λ2
i < (Mt − i + 1)ε)

log ε

= lim
ε→0+

logP(λ2
i < ε)

log ε

(see Theorem II.4) = (Mt − i + 1)(Mr − i + 1). (37)

On the other hand, it follows from the upper bound in (31)
that

lim
ε→0+

logP(r2
ii < ε)

log ε
≤ (Mt − i + 1)(Mr − i + 1). (38)

Therefore limε→0+

log P(r2
ii<ε)

log ε = (Mt − i + 1)(Mr − i + 1).
Now we have proven the following theorem.

3We write A º 0 if A is a positive semi-definite (p.s.d.) matrix,
and A º B or B ¹ A if A−B º 0.

Theorem IV.3: The ith layer of ZF-VB decoder based
on the greedy ordering rule, has diversity gain

Di = (Mt − i + 1)(Mr − i + 1), 1 ≤ i ≤ N. (39)
Compared to the norm ordering, the greedy decoding

ordering yields layers with significantly higher diversity
gains. Now it is interesting to find out the highest diversity-
multiplexing gain tradeoff an ordered decoding can achieve.
This problem is addressed in the next.

C. Upper Bound of {Di}N
i=1

Rewrite the ordered QR decomposition HΠ = QR. Let
us write a permuted channel matrix in its column form:
HΠ =

[
hπ(1), · · · ,hπ(i−1),hπ(i), · · · ,hπ(Mt)

]
= QR. De-

note Hi ,
[
hπ(1), · · · ,hπ(i−1)

]
. Then r2

ii = h∗π(i)P
⊥
Hi

hπ(i),

where P⊥Hi
= I−Hi(H∗

i Hi)−1H∗
i . Thus r2

ii is a function of
Hi and hπ(i), and it is invariant to the column permutation
of Hi. Hence out of the Mt! decoding orderings, one may

have up to
(

Mt

i− 1

)
· (Mt− i+1) = Mt!

(i−1)!(Mt−i)! different

values of r2
ii (1 ≤ i ≤ N). As we have mentioned before,

a good ordering rule should maximize the diversity gains
Di, i = 1, . . . , N . Theorem IV.4 presents an upper bound
to the diversity gains of the Mt layers for any ordering rule.

Theorem IV.4: Consider the ordered QR decomposition
HΠ = QR where Π is a permutation matrix dependent
on H. Let rii be the ith diagonal of R. The inequality

lim
ε→0+

logP(r2
ii < ε)

log ε
≤ (Mt−i+1)(Mr−i+1), 1 ≤ i ≤ N,

(40)
holds for any ordering rule. In other words, the diversity
gain of the ith layer

Di ≤ (Mt − i + 1)(Mr − i + 1), 1 ≤ i ≤ N. (41)
Proof: The proof is relegated to Section V-B.

It follows from (41) that if N = Mt, then DMt ≤
Mr−Mt +1, i.e., the first decoded layer has diversity gain
no higher than Mr −Mt + 1. It is well-known that if equal
rates are allocated across the layers, the overall system per-
formance of V-BLAST is limited by the first decoded layer.
Hence an interesting corollary of Theorem IV.4 is that the
V-BLAST system with any decoding ordering has diversity
gain Mr −Mt + 1.

We see from Theorem IV.3 and IV.4 is that the greedy
ordering rule is D-M tradeoff-optimal among all ordering
rules.

Since we have the Di’s, we can obtain the D-M gain
tradeoffs of the GRT-SMA and NRT-SMA according to
(22). Figure 2 shows the D-M tradeoff of various schemes
in a channel with dimensionality Mr = Mt = N . Besides
GRT-SMA and NRT-SMA, Figure 2 also shows the opti-
mal tradeoff (see (13)), the fixed order RT-VB scheme [11],
the standard V-BLAST either with or without BLAST or-
dering [3] whose tradeoff is Dvb(R) =

(
1− R

N

)
(see [12]),

and the V-BLAST architecture with an ML receiver whose
tradeoff is Dmac(R) = N

(
1− R

N

)
(see [13][16]). It is fur-

ther proven in [26] that the system with uncoded QAM



8

input and ML decoder (sphere decoder) achieves such a
tradeoff. As shown in Figure 2, both NRT-SMA and GRT-
SMA can achieve the two end points of the optimal D-
M gain tradeoff and can have significantly larger diversity
gain than the V-BLAST with an ML receiver, especially
in the low/medium multiplexing gain regime. It also fol-
lows from Theorems IV.4 and IV.3 that the D-M tradeoff
of GRT-SMA is an upper bound to the class of SMAs. The
moderate performance loss of GRT-SMA compared to the
optimal is due to using independent SISO coding/decoding
for each substream.

0      

 

 

 

 

 

Multiplexing Gain

D
iv

er
si

ty
 G

ai
n

D−M Tradeoff

Optimal
GRT−SMA
NRT−SMA
Fixed Order RT−VB
Standard VB
VB+ML (MAC)

N

N2

N

1

Fig. 2. Comparison of the D-M tradeoffs.

V. Proofs of Theorem IV.1 and Theorem IV.4

A. Proof of Theorem IV.1

We first establish the following definition and lemmas.
Definition V.1: A vector x is isotropic if for any unitary

matrix U, x ∼ Ux, i.e., x has a distribution invariant
under rotations and reflections.

Lemma V.2: (See [23, Theorem 1.5.5]) Suppose x ∈ Cn

is a circular symmetric Gaussian vector x ∼ N(0, I). The
Euclidean norm ‖x‖ and the direction v , x

‖x‖ are inde-
pendent. Moreover, the direction vector v has a uniform
distribution over the unit sphere S = {u ∈ Cn : ‖u‖ = 1}.
An immediate inference of Lemma V.2 is that the Gaussian
vector x ∼ N(0, I) is isotropic even if its norm is under
some constraint.

Lemma V.3: For any vector x ∈ Cn, the associated
Householder matrix Q satisfying Qx = ‖x‖e, where e is
the first column of an n × n identity matrix, is a function
of the direction of x, i.e., x/‖x‖, and is independent of ‖x‖.

Proof: The associated Householder matrix of x is Q =
I− 2ww∗, where [30]

w =
x− ‖x‖e
‖x− ‖x‖e‖ =

x/‖x‖ − e
‖x/‖x‖ − e‖ . (42)

Combining (42) and Lemma V.2, we have proven the
lemma.

The Norm QR decomposition algorithm applies the QR
decomposition to a matrix G , HΠ, where Π is the per-
mutation matrix such that ‖gi‖, i = 1, · · · ,Mt are in a non-
decreasing ordering. The squared norms of the unordered
columns are iid χ2

2Mr
random variables with pdf f(x) =

xMr−1e−x

(Mr−1)! , x ≥ 0, and cdf F (x) = 1− e−x
∑Mr−1

k=0
xk

k! , x ≥
0. According to Lemma II.2, ‖gi‖2 has distribution

f‖gi‖2(x) =
1

β(Mt + 1− i, i)
xMr−1e−x

(Mr − 1)!

×
(

1− e−x
Mr−1∑

k=0

xk

k!

)Mt−i (
e−x

Mt−1∑

k=0

xk

k!

)i−1

for x > 0. (43)

Hence r2
11 = ‖g1‖2 has distribution given in (23).

The standard QR decomposition of G is obtained by left
multiplying G with Mt Householder matrices successively
[30, Section 5.2.1]. After left multiplying one householder
matrix to G, we obtain

Q∗
1G =




r1,1 ∗ · · · ∗
0 ∗ · · · ∗
... ∗ · · · ∗
0 ∗ · · · ∗


 . (44)

The column vectors of G are neither Gaussian nor mu-
tually independent since their norms are constrained and
are in non-increasing order. But they are still isotropic by
Lemma V.2, and the direction vectors of all the columns
are still independent because of the independence between
direction vector and vector length. According to Lemma
V.3, the householder matrix Q1 is independent of {gi}Mt

i=2.
Hence the trailing (Mr)× (Mt − 1) submatrix in the right
hand side of (44) (represented by ∗’s) has the same distri-
bution as its counterpart in G. Hence we see that r2

22 has
the same distribution as ‖g2(2 : Mr)‖2, where gi(i : Mr)
consists of the last Mr− i+1 elements of gi. Following the
same argument, we can further show that r2

ii has the same
distribution as ‖gi(i : Mr)‖2. To further derive the pdfs of
the diagonal {r2

ii}Mt
2=1, we establish the following Lemma.

Lemma V.4: For a complex-valued Gaussian vector h ∼
N(0, IMr ), the pdf of the X , ‖h(i : Mr)‖2 conditioned on
Y , ‖h‖2 is

fX|Y (x|y) =
xMr−i(y − x)i−2

β(Mr − i + 1, i− 1)yMr−1
0 < x < y.

(45)
Proof: For the Gaussian vector h ∼ N(0, IMr ), the

squared absolute value of each element is iid of exponen-
tial distribution. Hence we can regard ‖h(Mr − i + 1 :
Mr)‖2, i = 1, 2, · · · , N as the epoch of the ith event in a
Poisson process with unit intensity. For a Poisson process,
given y as the epoch of the Mrth event, i.e., ‖h‖2 = y,
the arriving times of the previous Mr−1 events considered
as unordered random variables are independent and uni-
formly distributed on the interval (0, y). If Mr − 1 points
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are randomly dropped on an interval (0, y) and the posi-
tions of the points from the left to the right are indexed
as x1, x2, · · · , xMr−1, then according to Corollary II.3, the
pdf of xi is

fXi(x) =
xi−1(y − x)Mr−i−1

β(i,Mr − i)yMr−1
, 0 ≤ x ≤ y. (46)

As ‖h(i : Mr)‖2 = xMr−i+1, replacing i in (46) by Mr −
i + 1, we see that the pdf of XMr−i+1 is

fXMr−i+1(x) =
xMr−i(y − x)i−2

β(Mr − i + 1, i− 1)yMr−1
, 0 ≤ x ≤ y.

(47)
The lemma is proven.

Based on Lemma V.4 and the observation that {r2
ii}Mt

i=1

have the same distribution as ‖gi(i : Mr)‖2, we can calcu-
late the distribution of r2

ii (i ≥ 2) as (48) (see the top of
the next page). Denote the integral in (49) as J(x). It is
easy to see that

0 < J(0) =
∫ ∞

0

wi−2e−Mtw

(
ew −

Mt−1∑

k=0

wk

k!

)Mt−i

×
(

Mt−1∑

k=0

wk

k!

)i−1

dw

<

∫ ∞

0

wi−2e−wdw = (i− 2)!. (50)

On the other hand, by letting y = x + w, we have

J(x) =
∫ ∞

x

(y−x)i−1e−Mty

( ∞∑

k=Mt

yk

k!

)Mt−i (
Mt−1∑

k=0

yk

k!

)i−1

dy,

which is straight forward to show that the derivative J ′(x)
is finite. Hence, J(x) is a continuous function and by Taylor
Expansion, J(x) = J(0) + J ′(ε)x for some ε ∈ (0, x). Now
we have proven that in the neighborhood of the origin

fr2
ii
(x) = τi · xMr−i + o(xMr−i) (51)

for some τi > 0. Thus we conclude that

lim
ε→0+

logP(r2
ii < ε)

log ε
= Mr − i + 1, for 2 ≤ i ≤ Mt. (52)

Hence the ith (i ≥ 2) layer has diversity gain of only Mr −
i + 1. As for i = 1, it can be seen from (23) that

fr2
11

(x) =
1

Mt
· xMr−1e−x

(Mr − 1)!

(
e−x

∞∑

k=Mr

xk

k!

)Mt−1

= η · xMrMt−1 + o(xMrMt−1), 0 ≤ x ¿ 1

for some η > 0. Hence limε→0+

log P(r2
11<ε)

log ε = MtMr, i.e.,
the first layer has diversity gain of MtMr,

B. Proof of Theorem IV.4

The following lemma will be used in the proof.
Lemma V.5 (See, e.g., [31]) Let H be a Gaussian ma-

trix, whose entries are iid complex Gaussian random vari-
ables with zero-mean and unit variance. Denote its singular
value decomposition (SVD) by H = UΛV∗. Both U and
V are statistically independent of the diagonal matrix Λ.

Let HΠ = UΛV∗ be the SVD of the permuted chan-
nel matrix, where the diagonal entries of Λ are in non-
increasing order. An ordered QR decomposition is denoted
by HΠ = QR. Let H1 ∈ CMr×i and V1 ∈ CMt×i be the
submatrices consisting of the first i columns of HΠ and
V∗, respectively. The ith diagonal entry of R is (see, e.g.,
[32])

r2
ii =

1
[(H∗

1H1)−1]ii
=

1
[(V∗

1Λ2V1)−1]ii
, 1 ≤ i ≤ N.

(53)
Let us partition the matrices:

V1 =
(

V11

V12

)
, Λ =

(
Λ1 0
0 Λ2

)
, (54)

where V11 ∈ Ci×i, V12 ∈ C(N−i)×i, Λ1 ∈ Ci×i, and Λ2 ∈
C(N−i)×(N−i). Then

V∗
1Λ

2V1 = V∗
11Λ

2
1V11 + V∗

12Λ
2
2V12. (55)

Let α be the minimal number such that αV∗
11V11 º

V∗
12V12. Such an α exists and is finite with probability one

(w.p.1) (Proof: Observe that V11 is nonsingular with prob-
ability one. Let α = 1

λmin(V∗11V11)
which is finite w.p.1 and

we have αV∗
11V11 º I º V∗

12V12). Now, α is a function
of V1 and hence is independent of Λ according to Lemma
V.5. Because the diagonal of Λ is in non-increasing order,

V∗
12Λ

2
2V12 ¹ λ2

i V
∗
12V12 ¹ αλ2

i V
∗
11V11 ¹ αV∗

11Λ
2
1V11.

(56)
It follows from (55) and (56) that V∗

1Λ
2V1 ¹ (1 +

α)V∗
11Λ

2
1V11. Invoking the fact that A−1 º B−1 if A ¹ B,

we have

(V∗
1Λ

2V1)−1 º 1
1 + α

(V∗
11Λ

2
1V11)−1 =

1
1 + α

V−1
11 Λ−2

1 V−∗
11 .

(57)
In the special case where i = N = Mt, we have V11 = V1

and hence α = 0. Hence it follows from (53) and (57) that

r2
ii ≤

1 + α

[V−1
11 Λ−2

1 V−∗
11 ]ii

=
1 + α∑i

j=1 |vij |2λ−2
j

≤ (1 + α)λ2
i

|vii|2 ,

1 ≤ i ≤ N, (58)

where vij is the (i, j)th entry of V−1
11 . As both vii and α are

independent of λi, so is ζ , 1+α
|vii|2 . Out of the Mt! decoding

orderings, we have Mt!
(i−1)!(Mt−i)! different r2

ii’s whose asso-
ciated ζ’s are indexed as ζk, k = 1, 2, · · · , Mt!

(i−1)!(Mt−i)! .
Denote r2

ii,max the maximal among the Mt!
(i−1)!(Mt−i)! dif-

ferent r2
ii’s, and ζmax = max

1≤k≤ Mt!
(i−1)!(Mt−i)!

{ζk}. Then
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fr2
ii
(x) =

∫ ∞

x

fr2
ii|‖gi‖2(x|y)f‖gi‖2(y)dy (48)

=
∫ ∞

x

xMr−i(y − x)i−2ey
(
1− e−y

∑Mt−1
k=0

yk

k!

)Mt−i (
e−y

∑Mt−1
k=0

yk

k!

)i−1

β(Mr − i + 1, i− 1)β(Mt + 1− i, i)(Mr − 1)!
dy

(denote w = y − x) =
∫ ∞

0

xMr−iwi−2e(x+w)
(
1− e−(x+w)

∑Mt−1
k=0

(x+w)k

k!

)Mt−i (
e−(x+w)

∑Mt−1
k=0

(x+w)k

k!

)i−1

β(Mr − i + 1, i− 1)β(Mt + 1− i, i)(Mr − 1)!
dw

=
xMr−i

β(Mr − i + 1, i− 1)β(Mt + 1− i, i)(Mr − 1)!
×

∫ ∞

0

wi−2e−Mt(x+w)

( ∞∑

k=Mt

(x + w)k

k!

)Mt−i (
Mt−1∑

k=0

(x + w)k

k!

)i−1

dw. (49)

r2
ii,max ≤ ζmaxλ

2
i with ζmax and λ2

i independent of each
other. Using this property, we have

P
(
r2
ii,max < ε

) ≥ P (
ζmaxλ

2
i < ε

) ≥ P(ζmax < c)P(λ2
i < ε/c),

(59)
for any positive c. We can find some finite constant c such
that P(ζmax < c) is a strictly positive number. Hence

lim
ε→0+

logP(r2
ii,max < ε)
log ε

≤ lim
ε→0+

logP(λ2
i < ε/c)

log ε

= (Mt − i + 1)(Mr − i + 1) for 1 ≤ i ≤ Mt.(60)

where (60) follows from Theorem II.4. Theorem IV.4 is
proven.

VI. Conclusion

The conclusion is given at the end of [20].
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