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Abstract — 1In this paper, we present an asymptotic
analysis of the V-BLAST scheme at high signal-to-noise
ratio (SNR) region. We consider point-to-point MIMO
communications over an i.i.d. Rayleigh flat fading chan-
nel with n transmitting antennas and m (m > n) receiving
antennas. Both the zero-forcing V-BLAST (ZF-V-BLAST)
and minimum mean-squared-error V-BLAST (MMSE-V-
BLAST) are analyzed with respect to their diversity gains
and BER performances. We show that the diversity gain of
V-BLAST, including ZF-V-BLAST and MMSE-V-BLAST,
with optimal ordering is m — n + 1. Le., applying the
optimal ordering technique does not improve the diver-
sity gain. Contrary to the common perception that the
MMSE and ZF estimators have asymptotically the same
post-processing SNR for high input SNR, we show that the
difference between the post-processing SNRs of the two
estimators does not vanish for high SNR. We also quan-
tify the remarkable BER performance advantage of the
MMSE-V-BLAST over the ZF-V-BLAST for high SNR.

I. INTRODUCTION

It is well-known that deploying multiple antennas at both
the transmitter and receiver sides can drastically improve the
channel capacity. Many schemes have been proposed to ex-
ploit the high spectral efficiency of MIMO channels, among
which V-BLAST is relatively simple to implement and can
reap a large portion of the high spectral efficiency. At the
transmitter, V-BLAST de-multiplexes the input data streams
into n independent substreams, which are transmitted in par-
allel over the n transmitting antennas. At the receiver end, the
antennas receive the substreams, which are mixed and super-
imposed by noise. By applying sequential interference nulling
and cancellation, the receiver can separate the substreams one
by one [1]. Although V-BLAST is known to be equivalent to a
decision feedback equalizer and is optimal in terms of achiev-
ing the channel capacity [2] [3], it suffers from poor diversity
gain. In an i.i.d. Rayleigh flat fading channel with n trans-
mitting antennas and m receiving antennas (m > n), the first
detected substream has a diversity gain of only m — n + 1.
Due to the error propagation effect, the detection error of the
first substream can result in more errors to the subsequent sub-
streams detection. Hence the first substream is the bottleneck
which limits the overall performance of the scheme. One can
apply the optimal ordering technique to mitigate this bottle-
neck effect [1]. That is, at each step one should detect the data
substream with the largest post-processing SNR. It is shown
in [4] that the optimal ordering does not improve the diversity
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gain when there are two transmitting antennas (n = 2). How-
ever, it remains unknown if applying optimal ordering can help
improve the diversity gain in general cases. Moreover, almost
all the existing performance analyses are confined to ZF-V-
BLAST. In this paper, we show that for both ZF-V-BLAST and
MMSE-V-BLAST, using optimal ordering does not help im-
prove the diversity gain, which remains at m —n + 1. We also
show that the difference between the post-processing SNRs
of MMSE-V-BLAST and ZF-V-BLAST converges to a scaled
F-distribution for high input SNR. Contrary to the common
perception that the MMSE and ZF estimators have asymptot-
ically the same post-processing SNR for high input SNR, we
show that the difference between the post-processing SNRs
of the two estimators does not vanish for high SNR. We also
quantify the remarkable BER performance advantage of the
MMSE-V-BLAST over the ZF-V-BLAST.

II. CHANNEL MODEL AND PRELIMINARIES

A. Channel Model

We consider a communication system with n transmitting and
m receiving antennas in an i.i.d. Rayleigh frequency flat fad-
ing channel. The sampled baseband signal is given by

y = Hx + z, (D

where y € C™*! is the received signal and H € C™*" is
the Rayleigh flat fading channel. Throughout this paper, we
assume that the entries of H are i.i.d. and circularly symmetric
Gaussian random variables with zero-mean and unit variance,
ie., hij ~ N(0,1)forl < i < m,1 < j < n. Wealso
assume that the transmitted substreams are independent and
have uniform power, i.e., x € C™*! has covariance matrix
E[xx*] = 021, where E[-] stands for the expected value and
(-)* is the conjugate transpose. The noise z ~ N (0, 021) is
also circularly symmetric complex Gaussian. We define the
input SNR to be

@)

snr =

qu. | qu

Denoting h; € C™*! to be the ith (1 < i < n) column of
H, we can rewrite (1) as

y = Z h,z; + z. 3)
i=1

To separate the transmitted substreams at the receiver, V-
BLAST first estimates x,,, which we also refer to as the nth
layer, and then cancels it out from the received signal vector.
Next, it estimates the signal z,,—1, and so on. The signal esti-
mator can be either the ZF or MMSE estimator, corresponding
to ZF-V-BLAST and MMSE-V-BLAST, respectively. To esti-
mate x,,, the receiver needs to null out n — 1 interferences from
the directions of hy, ..., h,,_1, which consumes n — 1 degrees



of freedom. Assuming correct detection of x,,, the signal com-
ponent h,,x,, is subtracted out from y before the next step of
detection. Hence the estimation of z,,_1 only needs to null out
the remaining n — 2 interferences. Intuitively, the detection of
T,—1 1s more reliable than that of z,,, and so on.

To measure the reliability of a communication scheme, we
refer to the concept of diversity gain [5].

Definition 1 Ler P, (snr) denote the average error probability
of a scheme with snr. The diversity gain of the scheme is
de — lim log Pe(snr).

sSNr—oo

] “
ogsnr

The diversity gain measures how fast the error probabil-
ity decays with SNR. It is known that for the ZF-V-BLAST
scheme applied to (1), the ith detected substream has a diver-
sity gain of m —n + ¢, for 1 < i < n (see, e.g., [6], [4]).
Equivalently, the ith detected substream has BER

P, ;(snr) x snr (M=l <<, (5)

Clearly, at high SNR, the overall BER of ZF-V-BLAST is
dominated by the detection error of the nth layer. Moreover,
the detection error of the first substream (the nth layer) can se-
riously influence the subsequent substreams. Based on these
observations, we focus on analyzing the nth layer, since it
yields most information on the performance of the V-BLAST
scheme.

B. Preliminaries
We provides two useful theorems as follows. The first theorem
is can be found in [7, Lemma 2.1].

Theorem II.1 Let H be an m x n complex Gaussian matrix,
whose entries are i.i.d. complex Gaussian random variables
with zero-mean and unit variance. Denote its QR decomposi-
tion by H = QR. The matrix R is upper triangular with real-
valued diagonal. The entries of R are independent of each
other. Moreover, the square of the ith diagonal element of R,
2, is of chi-square distribution ' with the degree of freedom
2(m — i + 1), which we denote as Xg(m—i+l)' The off diago-
nal elements r;;, for 1 < i < j < n, are zero-mean complex
Gaussian with unit variance.

The second theorem is a direct subsequent of Weyl’s theo-
rem [8].

Theorem IL2 For an upper triangular matrix R € C™"*"™, the
smallest singular value

omin(R) < 1r§nii£n 733,

where {r;;}_, form the diagonal of R.

II1. ANALYSIS OF ZF-V-BLAST

The ZF-V-BLAST scheme can be represented by the QR de-
composition H = QR, where R is an n X n upper triangular

IThroughout of this paper, the chi-square distribution with the degree of
freedom [ is defined as the sum of the square of [ independent real-valued
zero-mean Gaussian variable with variance 1/2. It is slightly different from
the standard chi-square distribution

matrix and Q is an m X n matrix with its orthonormal columns
being the ZF nulling vectors. Let us rewrite (1) as

y = QRx + z. ©6)
Multiplying Q* to both sides of (6) yields

y = Rx + z, @)
or
U1 e T2 Tin z1 Z
U2 0 7o T2n T2 Zo
. = . . +
Un 0 0 7un T Zn
(8

The sequential signal detection is as follows

fori=n:-1:1

2, =C [(gz - Z;‘l:iJrl Tijjj) /Tii}

end

where C stands for mapping to the nearest symbol in the sym-
bol constellation. For simplicity, ignoring the propagation er-
ror effect, we can regard the resulting layers, which correspond
to different substreams, as

Yi =riixi + 24, for i=1,....n. 9)
where 72 ~ X%(mﬂ'ﬂ)’ or,
1 i
fr2 (z) = m:zrm te™". (10)
The post-processing SNR is
pF = risnr. (11)
Recall that the diversity gain is defined as
d=— lim w. (12)
snr—oo  logsnr

A direct calculation of (12) is often difficult. However, one
can apply the typical error event analysis technique to derive
the diversity gain (see [6, Ch. 3]). The typical error event is
defined as

E={H:r} <snr !}

It can be shown that the diversity gain of the ith layer is (see
e.g., [6])

13)

4 — — 1im gPE) _

i+ 1.
snr—oo  logsnr

(14)

We see that the larger the i is, the smaller the diversity gain
the 7th layer has. Consequently, the largest or nth layer, limits
the overall performance of ZF-V-BLAST at high SNR.

To improve the BER performance of the nth layer, one can
apply the optimal detection ordering technique. For each real-
ization of H, instead of fixing the nth layer as the data corre-
sponding to h,,, one can permute the columns of H such that
the channel gain of the nth layer, 7,,, is maximized as pro-
posed in [1]. The reordering technique can significantly im-
prove the BER performance. In [4], the special case of n = 2



is analyzed and it is shown that the reordering technique does
not improve the diversity gain. This finding coincides with the
result presented in [5], where m — 1 is given as an upper bound
of the diversity gain of V-BLAST with optimal ordering. How-
ever, the exact diversity gain of the V-BLAST equalizer with
optimal ordering was unknown for the general case of n > 2.
We attempt to answer this question in the following.

We focus on the nth layer. By permuting the columns of
H, one has n options of which substream to be detected first.
Let H® denote the matrix obtained by exchanging the ith and
nth columns of H (As a special case, H™ =H). Let H® =
QR be the QR decomposition and ) be the (n,n)th
entry of R(®) (As a special case, 7Y = r,,). According to
the typical error event analysis technique, the diversity gain of
ZF-V-BLAST with optimal ordering can be calculated as

log P ({|r7(f,)1|2 < snr_l} )
ord — : 1=1
e = snlrlgloo log snr
. n—1
log P <{|r£f,)l|2 < snrfl}_ r2, < snrl)
= — lim =
snr—oo log snr
+m —n+ 1. (15)

We now show that the conditional probability

P <{|r(i)|2 < snr’l}n_1 2, < snr1>

is lower bounded by a strictly positive number unrelated to snr.
Rewrite R as

X .. X
0 0 Ry

where R; is the tailing (n — ) x (n — i) upper triangular
submatrix of R and r; € C("~9>1, For notational simplicity,
we denote )

|

- & } |

(4)

Tnn,

R;
Then the last element of R, satisfies

A7)

Tii
0

)2 nT1pL -Tii
Ir&)| [rii 107 ]PR, 0 ]

e 07) (1R, (RiR) ' R;) {
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2
T

1+ I‘r (RjRZ)*er
2

re
rf(RR;) " 'r; (1%

<

In (17), Pﬁ stands for the orthogonal projection onto the null
space of RY. Given 72, < snr!, ie., r,, < snr—/2, it
follows from Theorem IL.2 that the smallest singular value of
R, is less than snr—'/2. Then the largest singular value of
(R}R;) ! is greater than snr. Hence

rf(RIR;) " 'r; > snrrfvvir;, (19)

where v is the eigenvector of (R;R,;) ™! corresponding to the
largest eigenvalue and v*v = 1. Combining (19) and (18), we

obtain that

2
|r(i) |? < it g1
o [r¥v|2
1

(20)

We emphasize that (20) holds as long as 72, < snr~! and no
matter what the other entries of R; are. Consequently, we have

. n
{|r,(f,Z|2 < snr’l} )
=it

2y

P <|r,(f%|2 <snrt

2
> P Tid <1].
|r¥v]|?

Since r; ~ N(0,I) (cf. TheoremII.1) and v*v = 1, we have

K3

(22)

Irfv[* ~ x3.

Note that 72

2~ X2 (m—i+1) and is independent of r;. Hence

r3/(m—i+1)
riv]?

~ Fo(m—it1),2s (23)

and consequently, the lower bound given in (21) is finitely

small and is not related to snr. The numerator in (15) can
be written as

P ({|r(i)|2 < snr_1}7171 r2, < snr_1>

n—1 ) ) "
H P <|r7(f,)1|2 <snrt {|r7(f,2|2 < snr’l} > ,
i=1 J=itl

which is also a finitely small number. Based on this observa-
tion and (15), we have proven the following main result of this
section.

Theorem IIL.1 For the MIMO channel of (1), the diversity
gain of ZF-V-BLAST with optimal ordering is

dn rd

oz (24)

=m-n+1,

i.e., applying optimal ordering does not help improve the di-
versity gain of ZF-V-BLAST.

IV. ANALYSIS OF MMSE-V-BLAST

For MMSE-V-BLAST, the nulling vector for the ith layer is
(3]

1 —1
snr

where H; € C™*? consists of the first 7 columns of H. Then

the post-processing SNR of the ¢th layer is

by w;|®

w* (Hi—le;l + snr—ll) wW; '

2

MMSE __

Pi

(26)

Inserting (25) into (26), we can simplify (26) via some
straightforward calculations to get (see, e.g., [3])

MMSE

P = hiC thy, i=1,... (27)

7n7



where C; = H,_1H} |+ #I. Applying the matrix inversion
lemma, we obtain

-1
1
C; ' =snr [I -H,_, (Hlei—l + EI) H

(28)
Inserting (28) into (27) yields

MMSE _ * oL
P = snrh; PHi—l h;+

1

1
- (HfleFl + —I) ] H}_ h; 9

snr

snrh i H; g [(H:—lHi—1)7

ZF
= e+

1 1 \—1
swhiH; [(Hflei,I) - (Hflei,I + —1) ] H}_1h;.(0)
snr

We reminder the reader that p?" is given in (11). To ob-
tain (30) from (29), we have used (11) and the fact that
h;*PﬁF1 h; = r%. Now we examine the second term of (30),
for which we have the following result.

Lemma IV.1 The random variable
1 —1
snrhiH; [(Hleil)l - (H;f,lHZ-,1 + aI) ] H; . h,

is statistically independent of p?" and has the same distribution
as

1 _
Tsnr é g;'k(Hz_lHifl + EI) lgi7 (31)

where g; ~ N(0,1I) is an (i — 1)-D circularly symmetric
Gaussian vector and is statistically independent of H,;_1.

Proof: Omitted. |
Define

Moo = g; (Hi_1Hi—1) 'gs. (32)
It is easy to see that sy, — 700, W.p.1 (with probability one)

as snr — oo. Hence at high SNR region, we can approximate

p]%/lMSE as

P & P Moo 33)
It can be shown that
m—1+2
= e Fa(i—1),2(m—i+2)5 (34)
or
m! 2
froe (@) = z>0 (35)

(i—2)l(m — i+ 1)! (1 +2)m+1’

which is independent of snr and p%" as proven in Lemma I'V.1.

Intuitively, 1. represents the power of the signal compo-
nent that is “hidden” in the range space of H;_; and is recov-
ered by the MMSE estimator. In contrast, the ZF estimator
nulls out of that signal component completely.

The cumulative density function (CDF) of 7., and empiri-
cal cumulative density function (ECDF) of 7gp,, form =n =
i = 4, is given in Figure 1. The ECDF line is based on 104
randomly generated 7s,, and is plotted using the Matlab func-
tion ECDF. We see that for the approximation of 7g,, by 70
is very accurate for a reasonablely high SNR (e.g., snr = 20
dB).

Using the typical error event analysis technique, we get the
diversity gain of the ith layer using MMSE-V-BLAST as fol-
lows

log P(p% 4+ neo < 1)

d™* = — lim
log snr

snr—oo

(36)

CDF of n_ and ECDF of n
1 T T

snr

-- CDF
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Figure 1: Cumulative distribution function (CDF) of 7
and empirical cumulative distribution function (ECDF)of 7,
based on 10* randomly generated variables. m = n = i = 4,
snr = 100 (20 dB)

Although the probability of the typical error event of MMSE-
V-BLAST is smaller than its ZF counterpart, we show that the
effect of 1, on the diversity gain will diminish as snr — oo
since 7)., is independent of snr. Hence we give the following
proposition.

Theorem IV.2 The diversity gain of the nth layer using the
MMSE-V-BLAST scheme is

dn,MMSE =m-n+1

Moreover, applying optimal ordering does not improve the di-
versity gain.

Proof:  Similar to ZF-V-BLAST, we apply the typical
error event analysis technique to derive the diversity gain of
MMSE-V-BLAST

log P(r2, snr+ e < 1)

dn,MMSE =-—1 ] 37
snr— oo ogsnr
It is easy to see that
log P (r?msnr + Moo < 1)
> logP (r2, <snr '/2,i=1,...,n)
+log P (ne < 1/2) (38)

In the right hand side of (38), the second term is a strictly
positive number and is not related to snr, and the first term
is proportional to snr—("~"+1) a5 it can be readily checked
from the proof of Theorem III.1. Hence d; ywse < m —n + 1.
However, d; yuse > die = m — n + 1. Hence d; yuse =
m—n+1. The proof of the diversity gain of ordered MMSE- V-
BLAST is rather complicated, which we omit here for limited
space. |

However, diversity analysis is not sufficient to shed light on
the remarkable BER performance gap between the two ver-
sions of V-BLAST. We need to compare the BER performance
of MMSE-V-BLAST and ZF-V-BLAST more closely.

Again, we focus on studying the nth layer. We consider
the case where noncoherent binary orthogonal FSK (BFSK) is



used. Denote p as the post-processing SNR. Then the BER
using BFSK is [4]
1
Pe(p) = 5e"%. (39)

The BER performance of ZF-V-BLAST can be evaluated as

o0 1 axsnr
PZF — —=—_.m-—n 7Id 40
fu = | g etdr 40)
After some straightforward calculations, we obtain
1 1 m—n+1
P = — . 41
€,BFSK 2 <1 n %snr) ( )

Similarly, the BER of MMSE-V-BLAST can be calculated as

o0 1 __ msnr+m m—n _—x
ng]l\:FS:K = En |:/0 me 2 (& d.’l?
= PeZ,FBFSKEﬁ |:8777/2]
= plm, n) Py, (42)
where

m) nn—2

— = -n/2 d

ulm,m) /0 ) m—nt D) (1 gmt
(43)

Clearly, 0 < p <

is the BER ratio between Pt and P#*

€,BFSK €,BFSK*

1. At high SNR, we can approximate (41) as

m—n
ZF 2

~
€,BFSK snrm—n+1

Hence the BER performance gain p is associated with the
post-processing SNR gain as

10

Glmin) === 07

logyg p(m, n). (44)
An analytical expression for p(m,n) is difficult. Numerical
computations show that u(m,n) can be quite small. Some

typical cases are presented as follows.

m | n | p(m,n) | G(m,n) (dB)
4 | 3| 0.6779 0.84
4 4 | 04372 3.59
6 | 6 | 0.2835 5.49
10 | 10 | 0.1362 8.66

Hence at the high SNR region, MMSE-V-BLAST can still
have considerablely smaller BER than ZF-V-BLAST. Figure
2 presents the comparative result on the BER performances of
the nth layer using MMSE-V-BLAST and ZF-V-BLAST. The
upper line (dash-dot line) represents P77 . The dashed line
represents P given in (42), and the solid line is the true
BER performance of MMSE-V-BLAST based on the post-
processing SNR given in (26) and the error probability in (39).
The true BER is obtained via 10* Monte-Carlo trials. We see
that P/f closely fits the true BER performance of MMSE-
V-BLAST especially for high SNR, which is because 1, ap-
proximates 7, very well at high SNR.

To conclude this section, we remark that the nth layer of V-
BLAST, without using optimal ordering, has the same statis-
tic of the conventional linear equalizers, including the channel
inverse equalizer and the linear MMSE (LMMSE) equalizer.
Hence our analysis also captures the performance difference

between the two linear equalizers.

m=4,n=4

-~ ZF-VB
- = MMSE-VB (high SNR approx)
— MMSE-VB

BER

0 5 10 15 20
snr dB

Figure 2: BER performance of the nth layer using ZF-V-
BLAST and MMSE-V-BLAST, where m = n = 4.

V. CONCLUSIONS

In this paper, we present an asymptotic analysis of the V-
BLAST scheme at high SNR region. Both the ZF-V-BLAST
and MMSE-V-BLAST are analyzed with respect to their di-
versity gains and BER performances. We show that for both
ZF-V-BLAST and MMSE-V-BLAST, applying optimal order-
ing does not improve the diversity gain. We show that the gap
between the output SNRs of MMSE and ZF estimators has a
scaled F distribution asymptotically for high SNR. We also
quantify the remarkable BER performance advantage of the
MMSE-V-BLAST over the ZF-V-BLAST for high SNR.

REFERENCES

[1] G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky,
“Simplified processing for high spectral efficiency wireless communica-
tion employing multiple-element arrays,” Wireless Personal Communica-
tions, vol. 6, pp. 311-335, March 1999.

[2] G. Ginis and J. M. Cioffi, “On the relationship between V-BLAST and the
GDFE,” IEEE Communications letters, vol. 5, pp. 364-366, September
2001.

[3] M. Varanasi and T. Guess, “Optimum decision feedback multiuser equal-
ization with successive decoding achieves the total capacity of the
Gaussian multiple-access channel,” Conference Record of the Thirty-
First Asilomar Conference on Signals, Systems and Computers, vol. 2,
pp. 1405 — 1409, Nov 2-5 1997.

[4] S. Loyka and F. Gagon, “Performance analysis of the V-BLAST algo-
rithm: an analytical approach,” IEEE Transactions on Wireless Commu-
nications, vol. 3, pp. 1326-1337, July 2004.

[5] L.Zheng and D. Tse, “Diversity and multiplexing: A fundamental trade-
off in multiple-antenna channels,” IEEE Transactions on Information
Theory, vol. 49, pp. 1073-1096, May 2003.

[6] D. Tse and P. Viswanath, Fundamentals of Wireless Communications.
Available: http://inst.eecs.berkeley.edu/~ee224b/sp04/#Course Notes,
2004.

[71 A. M. Tulino and S. Verdu, Random Matrix Theory and Wireless Com-
munications. Hanover, MA 02339, USA: now Publishers Inc., 2004.

[8] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge: Cambridge
University Press, 1985.



