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Abstract

This paper presents an in-depth analysis of the zero forcing (ZF) and minimum mean squared error (MMSE)
equalizers applied to wireless multi-input multi-output (MIMO) systems with no fewer receive than transmit
antennas. In spite of much prior work on this subject, we reveal several new and surprising analytical results in
terms of the well-known performance metrics of output signal-to-noise ratio (SNR), uncoded error and outage
probabilities, diversity-multiplexing (D-M) gain tradeoff, and coding gain. Contrary to the common perception
that ZF and MMSE are asymptotically equivalent at high SNR, we show that the output SNR of the MMSE
equalizer (conditioned on the channel realization) iS pmmse = pPaf + Msnr, Where p,s is the output SNR of the
ZF equalizer, and that the gap ng,, is statistically independent of p,s and is a non-decreasing function of input
SNR. Furthermore, as snr — 00, 1,y converges with probability one to a scaled F random variable. It is also
shown that at the output of the MMSE equalizer, the interference-to-noise ratio (INR) is tightly upper bounded
by %. Using the decomposition of the output SNR of MMSE, we can approximate its uncoded error as well
as outage probabilities through a numerical integral which accurately reflects the respective SNR gains of the
MMSE equalizer relative to its ZF counterpart. The e-outage capacities of the two equalizers, however, coincide
in the asymptotically high SNR regime, despite the non-vanishing gap 7,. By analyzing a fictitious parallel
channel model with coding across the sub-channels in terms of the diversity-multiplexing (D-M) gain tradeoff,
we provide the solution to a long-standing open problem: applying optimal detection ordering does not improve
the D-M tradeoff of the V-BLAST (vertical Bell Labs layered Space-Time) architecture. However, by deriving
tight lower bounds to the outage probabilities of ZF and MMSE equalizers, we show that optimal ordering yields
a SNR gain of 10log,y NV dB in the ZF-V-BLAST architecture (where N is the number of transmit antennas)
whereas for the MMSE-V-BLAST architecture, the SNR gain due to ordered detection is even better, and

significantly so.
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I. INTRODUCTION

Consider the complex baseband model for the wireless multi-input multi-output (MIMO) channel

with N transmit antennas and M receiver antennas

y = Hx +7, (1)

CM><1 CMXN

where y € is the received signal and H € is a Rayleigh fading channel with independent,
identically distributed (i.i.d.), circularly symmetric standard complex Gaussian entries, denoted as
hij ~ N(0,1) for 1 <i < M,1 <j < N. We assume that the number of receive antennas is no less
than the number of transmit antennas (M > N). We also assume that the N data substreams have
uniform power, i.e., x € CV*! has covariance matrix E[xx*] = 021y, where E[-] stands for the expected
value, (-)* is the conjugate transpose, and Iy is an N x N identity matrix. The white Gaussian noise

z ~ N(0,021) is also circularly symmetric. The input signal-to-noise ratio (SNR) is defined as

snr =

(2)

qu‘ ‘ aqw

In this paper, we present an in-depth analysis of the performance of the zero forcing (ZF) and
minimum mean squared error (MMSE) equalizers applied to the channel given in (1). The linear
ZF and MMSE equalizers are classic functional blocks and are ubiquitous in digital communications
[1]. They are also the building blocks of more advanced communication schemes such as the decision
feedback equalizer (DFE), or equivalently, the V-BLAST (vertical Bell Labs layered Space-Time)
architecture [2][3], and various other MIMO transceiver designs (see, e.g., [4][5] and the references
therein). Despite their fundamental importance, however, the existing performance analyses of the ZF
and MMSE equalizers' are far from complete. For instance, it is commonly understood that ZF is a
limiting form of MMSE as snr — oco. But when the ZF and MMSE are applied to the MIMO fading
channel given in (1), one may observe through simulations that the error probabilities of MMSE and
ZF do not coincide even as snr — oco. To the best of our knowledge, no rigorous account of such a
phenomenon is available in the literature. As another example, the problem of obtaining the exact
diversity-multiplexing (D-M) tradeoff [6] of V-BLAST with optimal detection ordering still remains
open, and so does the quantification of the gain due to optimal detection ordering. In this paper,
we attempt to provide an in-depth look at the classical ZF and MMSE equalizers with respect to the

well-known performance metrics of output SNR, uncoded error and outage probabilities, diversity-

n the sequel we refer to the ZF and MMSE equalizers as ZF and MMSE for simplicity.



multiplexing (D-M) gain tradeoff, and SNR gain.

The major findings of this paper are summarized in the following.
R1 A common perception about ZF and MMSE is that ZF is the limiting form of MMSE as snr — oo.
Therefore, it is presumed that the two equalizers would share the same output SNRs, and consequently,
the same uncoded error or outage probability in the high SNR regime. We show, however, that the

output SNRs of the IV data substreams using MMSE and ZF are related by

Pmmse,n = Pzf,n T Nsnr,ns 1<n<N, (3)

where p,¢,, and 7snr,, are statistically independent and nsnr s, is a nondecreasing function of snr. More-
over,

Nsnrn — Moon  With probability one (w.p.1), as snr — oo, (4)

M—N+2
where Nif_noo,n ~ Fo(N-1),2(M-N+2) i of F-distribution.? Further, the interference-to-noise
ratio (INR) of the nth substream at the output of MMSE (denoted as inr,), is approximately upper
bounded as

inr, < Tsnrin (5)

Pzt n

Tsnr,n

with the approximate upper bound being asymptotically tight for high SNR. Since . is inversely
proportional to the input SNR, (5) implies that the higher the input SNR, the smaller the leakage
from the interfering substreams.

R2 Using R1, we obtain tight approximations of the uncoded error and outage probabilities of MMSE
which can be evaluated via numerical integration rather than Monte-Carlo simulations. This analysis
also confirms that there is a non-vanishing SNR gain of MMSE over ZF as snr — oo. Interestingly,
however, the e-outage capacities of MMSE and ZF coincide in the asymptotically high SNR regime in
spite of the SNR gap between their outage probabilities.

R3 We obtain the following upper bounds of the output SNRs for the ZF and MMSE equalizers:

)\?Vsnr +1 )\?Vsnr

Pmmse,n < T —1 and Pzf.n < u (6)

where Ay is the smallest singular value of H and w is a Beta random variable that is independent of

An with a probability density function (pdf)

fule) = (N 1)1 -)¥2, 0<z<1 7)
2Given two independent Chi-square random variables a ~ x2, and b ~ x2. The ratio ¢ = ‘;ézb is a random variable
mtn nﬂm,mmm7 " 00
with distribution f.(z) = (g )nzme i,ﬁ_n , where I'(2) = fo t*“te~tdt. We denote ¢ ~ Fn [7]-

r(2)r(%)(n+ma)” 2



Based on these upper bounds, we prove that for both ZF and MMSE, the D-M gain tradeoff of a
fictitious parallel channel (with N independent sub-channels) with coding across the N substreams is
the same as that for the ZF and MMSE equalizers applied to the MIMO channel with independent

coding over each individual substream, and this trade-off is given as

d(r):(MwaLl)(l—%). (8)

That is, the SNR gain gap between the MMSE and ZF equalizers cannot be captured by the D-M
gain tradeoff analysis.

R4 As an important corollary of R3, we solve the well-known open problem on the diversity gain of
the V-BLAST architecture with optimal detection ordering [2]. Note that the V-BLAST architecture
can be regarded as employing ZF or MMSE equalizers combined with decision feedback [3], which in
the sequel are referred to simply as ZF-VB and MMSE-VB, respectively. We prove that with equal
rate for each substream and for any order of decoding, both ZF-VB and MMSE-VB have the D-M
gain tradeoff

don(r) = (M =N +1) (1= %), (9)

which means that the so-called V-BLAST order [2] does not yield an improvement in the D-M gain
tradeoff relative to unordered decoding.

R5 We also derive lower bounds on the outage probabilities of MIMO systems that use ZF and MMSE
(without decision feedback). The lower bounds are shown to be asymptotically tight for high SNR.
Based on these bounds, we prove that for ZF the strongest substream has a SNR gain of as much as
10log,o N dB over an average one at high SNR. For MMSE, the SNR gain is even higher, and that too
by a significant margin. When applied to systems with decision feedback, as in V-BLAST, because
the overall outage probability is dominated by that of the first detected substream, this result also
quantifies the coding advantage of optimally ordered decoding over fixed order decoding.

The results R1 and R2 are on the distribution of the output SNR of the MMSE equalizer, the
asymptotic normality of interference-plus-noise at its output, and the coded (outage) and uncoded
error probability performance. Such problems are also investigated in [8][9] for the asymptotic property
of linear multiuser receivers. While their work focuses on large systems, we study finite systems with
asymptotically high SNR. The influence of non-Gaussian interference upon error probability in finite
CDMA systems is studied in [10] which shows that the larger an interfering user’s amplitude, the

smaller its effect on bit-error rate [10]. The (tight) upper bound of INR given in (5) yields more



insights into this observation. The output SINR decomposition (3) was proposed in the conference
version of this paper [11]. In the independent work [12], the authors show that such a decomposition
is possible even if the columns of H are correlated (but the rows need to be independent). In this
case the pdf of the output SINR pmmsen is very involved. The approach of [12] is to approximate
the first three asymptotic moments of nsnr, as M, N — oo, and then approximate it by a Gamma
(or generalized Gamma) random variable. Our strategy is to study the exact distribution of nsnr,, at
asymptotically high SNR, which leads to a more concise approximation.

The results R3, R4, and R5 are motivated by the problem of the D-M tradeoff of V-BLAST with
ordered decoding. Although this problem has inspired much research, previous attempts have only
achieved partial success and that too for the ZF-VB. For instance, it is shown in [13], [14] that optimal
ordering does not improve the diversity gain of ZF-VB but that it provides a 3 dB SNR gain when
there are two transmitting antennas (N = 2). The extension to the case of N < 4 can be found in
[15]. Tt is also shown in [13] that a suboptimal column-norm ordering technique proposed in [16] does
not improve the diversity gain for arbitrary N. Note that a (loose) upper bound to the D-M tradeoff

of ZF-VB with optimal order detection is given in [6] to be

dyp(r) < (M — 1) (1—%), 0<r<NAN. (10)

The difficulty of this problem lies in the fact that the distribution of the layer gains becomes ex-
tremely complicated due to the channel-dependent detection ordering. We circumvent this difficulty
by identifying the sharp upper bound given in (6). Indeed, the result R5 is also related to the bound
(6).

The rate/capacity performance of ZF and MMSE receivers applied to the point-to-point fading
MIMO channel are addressed in [17], where the authors show that the average capacity loss due to
using the linear ZF or MMSE equalizers converges to a constant as SNR increases. Similar conclusions
with regard to the sum rate are made in [18] and [19] in the context of the multi-access channel
(MAC) and the broadcast channel (BC). Combined with these results on rate/capacity performance,
this paper provides a more detailed picture of the performance of ZF and MMSE applied to both
single user and multiuser MIMO fading channels, especially in the high SNR regime.

The remainder of this paper is organized as follows. Section II introduces some preliminary results
to be used in the paper. In Section III, we analyze the output SNR of MMSE. Section IV derives the

uncoded error and outage probabilities of MMSE at high SNR. The D-M gain tradeoffs of the system



using ZF and MMSE are derived in Section V. Based on a tight lower bound to the outage probabilities
of the N substreams, we derive the SNR gain of optimal detection ordering for V-BLAST in Section
VI. Section VII presents the numerical examples validating the theoretical analysis. Conclusions are

made in Section VIII.

II. PRELIMINARIES
A. Basics of ZF and MMSE FEqualizers

Consider the MIMO channel model given in (1) where the N data substreams are mixed by the
channel matrix. The ZF and MMSE equalizers can be applied to decouple the N substreams. The ZF

and MMSE equalization matrices are (see, e.g., [20])
1 \!
Wwﬂwm*ijdW@m:@m+wQ H". (11)

Left multiplying the received signal vector y by Wy and W ymse, we obtain N decoupled substreams

with output SNRs

snr
1<n<N 12
pi,n [(H*H)_l]nna SN s 9 ( )
and
>Nt ~1, 1<n<N, (13)

P )

snr

respectively. Here [],,,, denotes the nth diagonal element. Denote h,, the nth column of H and H,,

the submatrix obtained by striking h,, out of H. It follows from (12) and the fact (see, e.g., [21])

1
[(H'H) o = - T (14)
h*h, — h*H,(H:H,)"'H:h,
that
Dot = [h;hn — h;Hn(H;Hn)_lH:hn] snr = (h:Pﬁnhn)snr, (15)

where Pﬁn =1-H,(H:H,) 'H} stands for the orthogonal projection onto the null space of H%. In

the case of i.i.d. Rayleigh fading, h;‘LPﬁn h, ~ X% with distribution [22]

(M—N+1)

1 —N _—z
Fozpg n, (@) = mfcM Mem®, x>0 (16)

Similarly, we have an alternative expression for pmmsen [11]:

1 \L
Pmmse.n = [h:‘Lhn —h'H, (H;Hn + san> H;’;hn] snr, 1<n<N. (17)



B. Diversity-Multiplexing Gain Tradeoff

In [6], the authors established the framework of D-M gain tradeoff analysis in the asymptotically
high SNR regime. Denote R(snr) as the data rate of any communication scheme with input SNR snr.
The diversity gain and multiplexing gain are defined as follows [6].

Definition I1.1: A scheme is said to have multiplexing gain r and diversity gain d if the data rate
R(snr) satisfies

R(snr)

li = 18
snrlinoo log snr " ( )

and the average error probability P,.(snr) satisfies

. log P.(snr)
lim ———=
snr—oo  logsnr
Because Pe.(snr) and R(snr) are related, so are d and r. We denote d(r) the tradeoff between the

= —d. (19)

diversity gain and multiplexing gain, which is always a non-increasing function.

C. Two Theorems

The following two theorems turn out to be very useful for the analysis in this paper. The first
theorem is a slight variation of [23, Lemma 2.6].

Theorem I1.2: Let H be an M x N Gaussian matrix, whose entries are i.i.d. complex Gaussian
random variables with zero-mean and unit variance. With H = UAV™* being the singular value
decomposition (SVD) of H we have that both U and V are Haar matrices ® and they are statistically
independent of A.

The second theorem is implied in [6].

Theorem I1.3: For an M x N i.i.d. Rayleigh fading channel matrix H with ordered squared singular

values of H, )\%2)\%2---2/\?\,>0,

log P(\2
i 108 (A <)

= (M - 1)(N — 1 1<n<N. 20
Jip PERSEEE (M V1), 1<n< (20)

In other words,

P(A2 < ¢) = Mt D)N=ntD4o(l) 1 <y < N. (21)

where o(1) stands for a vanishing term as ¢ — 0.

3A random matrix is a Haar matrix if it is uniformly distributed on the set of unitary matrices.



III. ANALYSIS OF THE OuTPUT SNR oF MMSE

Since the elements of the channel matrix H are i.i.d., the output SNRs of the N substreams are of
identical (but not independent) marginal distributions. Hence, to study the distribution of the output
SNRs of the N substreams, we only need to focus on one, say the nth substream. As shown in (15)
and (16), pst,p is equal to snr multiplied by a Chi-square random variable. However, the distribution of
the output SNR of MMSE is more complicated. We start with analyzing the gap between the output
SNRs of ZF and MMSE.

It follows from (15) and (17) that the difference between pmmse,n and pu¢ 5, which we denote as n9snr.r,
is

s . LY
w2 e — i = SO, [(H;;Hm - (Fm o) ] Hih, (22
Since pmmse,n = Paf,n + Msnr,n, the characterization of pmmse,n is given by the following theorem.
Theorem III.1: The random variable ns,;, is statistically independent of p,¢,. Moreover, as snr —

00, it converges to a scaled F random variable w.p. 1. In particular,

w.p.1
Tsnrin ——— Tooms (23)
where
M—N+2
ﬁnoo,n ~ f2(N—1),2(M—N+2)- (24)
Proof: Let H,, = U,A,,V be the SVD, where U,, € CM*(N=1 and A,, € CW-Dx(N=1) | Then
1 -1
Newm = snrhiU,A, |A? — (Ai + SI) A, Ulh, (25)
nr
1 —1
= h'U, (Ai + san> Uih,. (26)

It is readily seen from (26) that given H,, and hy,, 7snrr, is a non-decreasing function of snr. According

to the i.i.d. Rayleigh fading assumption, E[h,h}] = I, thus
E[Pg, hyh; U] = En, [Ehn\Hn [Pr, hyh;U,]| = En, [Py, Us] = 0, (27)

where the last equality follows by the fact that PﬁnU; = 0 for any instantiation of H,. Since
both Pﬁnhn and U}h,, are zero-mean Gaussian random vectors, (27) implies that Pﬁnhn is sta-
tistically independent of Ujh,. Note that Pﬁnhn is also independent of A,,, because Pﬁnhn =
(I - U,U;)h,, with both h,, and U, independent of A,, (cf. Theorem II1.2). Hence Pﬁnhn is inde-

pendent of h*U,(A2 + L1)~1U*h,, since the latter is a function of U%h,, and A,,. Consequently,

snr
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st = | Pz, hnl/?snr is also independent of nsnrn = hj; Uy (AZ + =1)"'Ushy,. Here || - | stands for
the Euclidean norm of a vector.

It follows from (26) and the fact that the diagonal elements of A2 are all nonzero with probability
one (w.p. 1) that

lim 7Nsnr.n = Wi ULA, 2 Uk, (28)

snr—oo

Defining e n £ h*U,A,,%2Uh,, we have shown that

w.p.1
Nsnrn —— Moo,y @S SNF — 00. (29)

Because 7snr,, is independent of py 5, 5o is its limit 7eg 1,

We now derive the distribution of 7 5. Denoting g = U} h,, € CWV=-Dx1" we have that Noon =
g*A;%g, where g ~ N(0,I) since E[gg*] = U:U, = Iy_;. Moreover, g and A,, are independent
since the singular matrix and singular values are independent (cf. Theorem II.2). Consider a matrix
G e CM*(N=1) which has the same dimension and distribution of H,, and is independent of g. Using

the SVD of G = UgAcV§, we have g*(G*G,,)"!g = g*VgAE;QVEg. It is seen that *
Vig~g, Ag~A,
and Vg is independent of Ag. Consequently, we have
Noom ~ &' (G*G) g (30)

Construct a unitary matrix U, such that Ugg = [07,||g||]T. Note that U, is hence a Householder
matrix [24]. Then

Moo = (07, [|g]](U,G*GU) (07, [|g]]" (31)

Observe that G*G is statistically invariant under unitary transformations. Hence,

Moo ~ 107, [g]1(G*G) 70", gl = llgl* [(G*G)~] (32)

(N-1),(N-1) *
It is clear that ||g||? is a Chi-Square random variable with 2(N — 1) degrees of freedom, i.e., ||g|* ~
X%(Nfl)' According to (14) and (16),

1 2
() — ~ X _ .
(G*G) Moy vopy M)

(33)

By a ~ b, we mean that the random variables a and b have identical distribution.
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Hence, we have
X

where X ~ X%(N—l) and Y ~ X%(M—N+2)’ or equivalently that
M —N+2
T lom ™ FoN-1)2(M—-N+2); (35)

with the pdf of 1, given as

M! VN2
S @) = (N M = N 1) (14 2)

0< < oo. (36)

|
Intuitively, 1.0, represents the power of the signal component “hiding” in the range space of H,, that

is recovered by the MMSE equalizer. In contrast, the ZF equalizer nulls out that signal component.

Tlsnr,n

For any full rank channel matrix, — 0 as snr — o0o. Therefore, the interference from the other

Pzt n
data substreams is negligible compared to the channel noise as snr — oco. Consequently, for any full
rank channel realization, the ratio of the output SNR gains (in dB) of the MMSE to ZF equalizers

goes to unity or

10 10g10 pmmse,n — 1010g10 (1 + 775”'””) N 07 as snr — 00
zf,n Pzt n

In spite of the diminishing relative output SNR gain, the MMSE is shown to have remarkable SNR
gain over ZF even as snr — oo owing to the fact that the limit of their difference is an F random
variable.

In the next section, we will provide applications of our analysis of pmmse,n = Pat,n + Msnrn. It is
noted here that Theorem III.1 was originally presented in the conference version of this paper [11].
In the independent work of [12], the authors show that p,¢, and 7, are independent even if the
columns of H are correlated but with the rows of H being independent. However, in this case, the

exact distribution of 7, is unknown.

A. Interference-to-noise ratio (INR)

In recovering the signal z, in the range space of H,, the MMSE equalizer admits some leakage
from the other interfering data substreams. It is shown in [10] that the leakage diminishes as input
power increases. A more careful study detailed in Appendix A shows that the INR at the output of

the MMSE equalizer is in fact inversely proportional to the input SNR.
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Lemma II1.2: The INR of the nth substream obtained using MMSE equalizer is upper bounded by
inr, < fenrin (37)

This upper bound is asymptotically tight at high SNR.

Proof: See Appendix A. |

IV. APPLICATIONS OF THEOREM III.1

In this section, we apply Theorem IIIL.1, i.e. the relationship pmmse = pazt,n + Nsnr, to analyze the
uncoded error probability, outage probability, and e-outage capacity of the MMSE equalizer. We shall
see that the gap nsn, brings about a remarkable difference in performance between the MMSE and
ZF with respect to the uncoded error probability and outage probability as snr — co. Interestingly
however, their e-outage capacities coincide in the high SNR regime because this performance metric
depends only on the fact that the ratio of the output SNRs of the MMSE and ZF equalizers approaches

unity with increasing SNR.

A. Uncoded Error Probability Analysis

The uncoded error probability of the ZF equalizer is well known but we state it here for the sake of
completeness. Consider the input of binary phase-shift keying (BPSK). The error probability of the
nth substream obtained by ZF is (cf. (16))

Pb7zf:/0' Q(\/anrx)(]wiN)!acM_Ne_xdx, (38)

2
where the @Q-function is Q(x) = \/% f;o e~ 7 dt. The exact closed-form expression of P, ¢ is known
(see, e.g., [20]).
P, 1 1 snr M=N+FIMNFL (AL N +n L+ /i 39
bt = 3 \1 7 Trsmr B (39)

n=0 n

We now consider the problem of analyzing the uncoded error probability for the MMSE equalizer.
Because the output SNRs of all the N substreams are of identical distribution, we only need to focus
on one substream.

For the error probability of MMSE, we assume that the sum of the perturbations due to the in-
terference from the other data substreams and the channel noise can be well approximated as being

Gaussian. Consequently, the approximate error probability of MMSE equalizer can be calculated
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through the @Q-function (this Gaussian approximation is remarked on later):

Pb,mmse = Epmmse,n [Q (\/ 2pmmse,n)} . (40)

It follows from (22) and (29) that
.p-1
Pmmse,n P, Pzt + Moo, &S SNr — OO. (41)

Applying the Taylor expansion to (« /2,0mmse7n) around pyf 5, + 7oo,n, We obtain

P
Q (\/ 2pmmse,n) =@ < 2(pzf,n + 7700777,)) + E}é?(”oom - nsnr,n) , (42)
where £ € (Pmmse,ns Pzt + Noon) and O(z) = \/% exp (—%) Recall that [25]
1Y) ®(z) O(x)
(1—9,;2) < Q) < 2 (43)

o

—~
ﬁ
At

Therefore ) ~ Q(v/2€) at high SNR. Also note that & — pur.n + Noon and Moo n — Nsnrn — 0 W.p.1

V2
as snr — oo. We can see from (42) that

Q(\/72pmmse,n)=Q( 2<pzf,n+noo,n>) (1+0(1)) wp. 1. (44)

Hence, at high SNR, we have that

E[Q(vV2mmsen)] (45)

i
snrlgloo E [Q ( 2(pzf,n + 77007”))]

so that the error probability of MMSE can be further approximated as

Phanee = E|Q (/200 + 1) ) | (46)

Since the distributions of p,f , and 7., are given in (16) and (36), respectively, (46) can be obtained

via numerical integration rather than Monte Carlo simulations. Invoking the alternative expression of

Q) = 1 /0 " ( x2> o, (47)

 2sin2 6

Q(z) [26], namely that

we have

Pb,mmse = Enoo,n

1 [ [7/? 2(snrz + Noo,n) 1 M_N
= — —= ) df e % 4
71'/0 /0 exp< 2sin? ¢ > (M—N)!x o (48)

1 [ [7/2 snrx 1
—MNoo,n _ d@ M—-N 71’d 4
e 7['/0 /0 exp( sin29> (M—N)!x e x] (49)

= E [e_n"o’”] Py ¢ (50)

< E

MNoo,n
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Moo,n

where to obtain (49), we have used the fact that e~ > e sin26. Note that E [e~""] is a constant
number strictly less than unity. The equation (50) shows the non-vanishing error probability gap
between ZF and MMSE even in the high SNR regime.

Calculating the error probabilities of a general quadrature amplitude modulation (QAM) is straight-
forward using the error probability expression in Q-function [27].

The representation of the error probability using the @-function is based on the Gaussian approx-
imation of the perturbation due to interference-plus-noise, and hence is not exact. In [10], Poor, et.
al. show that in some scenarios the error probability calculated based on the Gaussian approximation
is indiscernible from the exact one. It is explained essentially by observing that (i) the leakage from
the interfering substreams diminishes at high SNR and (ii) the interference term is dominated by the
noise at low SNR. In either case, the perturbation can be well-approximated by Gaussian noise. But
their work focused on non-fading channel. In fading channels, however, a rigorous justification for the
Gaussian approximation is still missing. Indeed, we have observed through extensive simulations that
for rank-deficient channel realizations there is a non-negligible discrepancy between the @Q-function
approximation and the actual one, especially for channels with low dimensionality (say, M = N = 2).
Despite this phenomenon, the Gaussian approximation is still quite accurate in terms of average error
probability for channels that are full rank with probability one, a fact that is verified in a numerical

example given in Section VII.

B. Outage Probability and e-Outage Capacity

Consider employing independent codes of rate R each over the N antennas. The nth antenna
transmission is in outage if the output SNR cannot support the target rate R. With the ZF equalizer

the outage probability of the nth substream is

2ft 1
Pl = Pllog(1 4 pun) <R =B, (5 ) o1

snr
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M—-N

I z® : : : 2
where FX§(M_N+1)(x) =1l-e¢ 2 o7 18 the cumulative density function (cdf) of Xo(m—N+1): Lhe
=0

outage probability of MMSE is

Pcﬁll??fze =P (log(l + Pzt + nsnr,n) < R)
2k _1 R
2% —1—n
- /0 FX%(M—N+1) < snr > fnsnr,n (n)dn
281 R
2% —-1-n
- /0\ FX%(M_N+1) < snr > fnoc,ﬂ(n)dn (52)
We impose the upper limit 2/ — 1 on the integration because FX%(M—NJrl) () = 0 when z < 0. Inserting

(36) into (52), we calculate the outage probability of MMSE using numerical integration. Note that

k M—N+1)

o0 (
X X
_ _ (M—N+1)
Py @=e" 3, 5= (M—N+1)! +0(5” )
k=M-—-N+1

around the origin. It follows from (52) that for high SNR (snr > 2% — 1),

pmmse 2R -1 271 1 n M=N+H d
out,n 7 X%(M—NJrl) snr 0 - oR _ 1 fﬂoo,n (77) n

2f—1 " M—N+1
zf
- 2 (mmty) hetia (53)
0
Given a fixed rate R, there is a non-vanishing gap between PJ{"7¢ and Pozlfltm even as snr — oo.

Moreover, as we can observe from (53), the gap would become smaller as R increases. This phenomenon
is validated in Section VII on numerical results.
The e-outage capacity is the maximum supportable rate under the restriction that the outage prob-

ability is no greater than ¢, and is defined as
Cui(e) £ sup {R : Plog(1 + purn) < R) < €} (54)
and

Cmse(€) = sup {R : P(log(1 + pmmsen) < R) < €}
= sup{R:P(log(l+ psn+ Nsnrm) < R) < €}, (55)
respectively. Since the cdfs of both p,f, and pmmse,n are continuous. It is easy to show that the cdfs

of log(1 + put ) and log(1 + pmmse,n) are also continuous. Therefore Cy¢ and Cpmese are the solutions

to P(log(1 + pue.n) < R) = € and P(log(1 4+ pmmse,n) < R) = €, respectively. Now we obtain that

Cale) =tog (14s0r 2 (0)). (56)

X2(M—N+1)
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—1 . . . 2 < oo
where FX%(IM—N+1) is the inverse function of the cdf of X3(M—N-+1) thus satisfying

/FXg(M—N-H)(E) ¥$M—Ne_xdaj —€ (57)
0 (M —N)! '

For Cmse(€), we examine the relationship:

P (log(l + Pmmse,n) < sz(e))

=P (pzf,n + Nsnr,n < San;21 (6))
2(M—N+1)
_ Tlsnr,n
= P(x3 <F; - =R 58
<X2(MN+1) X§<MiNH)(f) snr ) (58)
By the continuity of the cdf,
; 2 -1 _ Nsnrn \ 2 1 .
Jim P <X2(M—N+1) < FX%(]MfNJrl)(G) “onr > =P <X2(M—N+1) < FX§<MN+1>(6)> =e  wpl

Hence we have that limgnr— o0 P (10g(1 + pmmse,n) < Cz(€)) = € w.p. 1, and consequently,

lim Cpymse(€) — Cye(€) =0,  w.p.1, (59)

snr—oo

i.e., the MMSE equalizer has the same e-outage capacity as ZF at asymptotically high SNR.

The non-vanishing SNR gap between the outage probabilities of the zero-forcing and MMSE equal-
izers and the result in (59) may seem contradictory at first. The explanation for this apparent con-
tradiction is that the difference between the outage probabilities of the two equalizers vanishes as the
rate increases such that the difference between the maximum rates achievable with ZF and MMSE
such that outage probability is less than a fixed threshold shrinks to zero with increasing SNR, a

phenomenon we illustrate again in the section on numerical results.

V. ANALYSIS OF D-M GAIN TRADEOFF

In this section, we obtain the exact D-M gain tradeoffs of the linear ZF and MMSE receivers
when independent, equal rate (and equal power) SISO Gaussian codebooks are employed over the N
antennas. As a by-product of this analysis, we further infer that no channel dependent ordering of

substream decoding can improve the D-M tradeoff of V-BLAST.

A. The Linear ZF Equalizer

Consider the MIMO system that employs independent coding for each substream and the ZF equal-

izer at the receiver. Each substream effectively experiences a scalar channel whose gain is of X%( M—N+1)
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distribution. With the overall multiplexing gain r, each substream has a multiplexing gain . The

system is in outage if and only if at least one substream is in outage. Hence, the overall system outage

probability is given as

Poutze(snr) =P <1og <1 + KHqZM) < % log snr, for some n) , (60)

where P(E) denotes the probability of event £. We can bound (60) by

N
snr r snr T
Pllog|1+ ——————] < —logsnr gPqunrgg P(lo 1+><lo snr).
< g( [<H*H>11n> N > punat(snr) = 2 < g( (HH) 1, ~ N *®
(61)

Because the output SNRs of the N substreams have identical distributions, the rightmost expression

of (61) is
N-P <log <1 + KH;H) < Tlogsnr> . (62)

log N snr—
08 [V snr—oo, 0, according to (19), the diversity gain

Since
log snr

log Pout z£(snr) log P (log (1 + m> < y log snr)

d, =— lim ———— = — i

i(r) snr—60 log snr i log snr (63)
log P (% < snr%_:l)
~ — lm Lol (64)
snr—o0 log snr
1
Using the fact that (CooEm has pdf given in (16), one can easily derive from (64) that (see [20])
11
r

dia(r) = (M =N +1) (1- ). (65)

B. The Linear MMSE Equalizer

Analogously to (60), the outage probability is given as

Pout,mmse(snr) =P (log ([(H*H +sn;I)_1] ) < % log snr, for some n) , (66)

snr
Since the MMSE equalizer has a higher output SNR than the ZF equalizer (by 7snrn, & non-negative
random variable), we have that Pout mmse < Pyut,2¢. Therefore, it must be true that the D-M gain

tradeoff for MMSE is better than that for ZF, i.e.,

10g Pout,mmse (sn r)
snr— o0 log snr

2(M—N+1)<1—%>. (67)

Interestingly, equality in the above inequality holds, as we shall see next.
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We first prove the following lemma on the distribution of the elements of a column of a Haar matrix

and their minimum value.

Lemma V.1: The joint pdf of {|v,|?}Y}, where v £ [v1vg ---vy]” is a column vector of a Haar

matrix V.€ CVXV g 5

N-1
fonzo ow 2 2(@1, - ono1) = (N =1L for 0< |z, <1 and 0< ) |ua* <1 (68)
n=1
The marginal pdf of |v,|? for each n is
fioap(@) = (N =11 =2)"2, 0<z <1, (69)

Define u £ min{|v,|?,n = 1,--- ,N.}. Then u has pdf

1

fulz)= (N> = N)1 - Nz)¥"2 0<z< ¥ (70)

Consequently, for any fixed n, |v,|? has the same distribution as Nu, i.e., |v,|? ~ Nu.

Proof: As v is a column of a Haar matrix,

v

~ S

ek
where ¢ ~ N(0,1y) is a complex-valued circularly symmetric Gaussian vector. Denote X; = |(;|2.
Then X;’s are i.i.d. with an exponential distribution, i.e., fx,(x) = e for x > 0. Consider the
conditional joint distribution of X; for 1 < i < N — 1 given Y £ I¢||?. Using the fact that Y =

SV Xi ~ X3y, we obtain

Ixi Xy (@ TN-1ly) = fY‘le"-vXNfl(mxlv"-vafl)f(ﬁlw--,fL’Nfl)
L XNt ) ) — fy(y)
721'\;1 X4
€ i N
= ey - (Ve (1)
(N-1)!
AS ”UZ‘ - “‘Célhz == %, it fOHOWS fI'OHl (71) that
FiorPoeafon a2y (@15 @N—a]y) = (N = 1)L (72)

Since the joint pdf of {|v,|?}Y=! is independent of Y, we have proven (68). Note that the random

vector [|v1|?, ..., vn_1/%] has a uniform distribution over the simplex
N-1
sz{{yvnyQ Nolo< ]vn|2<1,2|vn|2<1}, (73)
n=1

N-1

"Here we present the joint pdf of {|v,|?} Y= rather than {|v,|>}52_; because the latter is a degenerated function since

N
>oim1 |Ui‘2 =1L
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which has volume Vol(S) = ﬁ

By the property of symmetry, |v,|?’s have identical distribution. Note that |v,|?> has the same

distribution as where the two independent Chi-square random variables Z; ~ X% and Zy ~

Z1
Zh+Zo

X3n_o- Hence |v,]? is of Beta distribution with parameter (1, N — 1) (see, e.g., [28, pp. 60]):

fionp@) = (N=1)1-2)"? 0<z<L (74)
According to the definition v £ min{|v,|?,n =1,--- , N.}, we have
P(u > z) = P(|[v,]? > 2,1 < n < N). (75)

It is not difficult to verify that the set {|v,|?> > z,1 < n < N} corresponds to a subset of S:

N—-1
1
N-1
{{|vn|2}n_1 : ”l)n|2 > xml - Zl ”Un’2 > x}7 0 S x S N; (76)
n=

which is a smaller simplex with volume (To see this point, note that the side length of this smaller

simplex is 1 — Nx.)

(1 — Nz)N=1.Vol(S). (77)
It follows from (75) and (77) that
P(u>2) = (1 - Nx)¥ 1, (78)
Thus the pdf of u is
fulz) = W:N(N—l)(l—Nx)NQ, 0<z< % (79)
Comparing (74) and (79), we see that |v,|? has the same distribution as Nu for all n. |

Besides the MIMO system considered in the beginning of this section, which employs independent
coding for each substream, we also consider a system where a single SISO Gaussian code is applied

across IV substreams. With a linear MMSE equalizer, the D-M gain tradeoff of the latter system is

_ log P (Zf;]:l log(1 + pmmsem) < rlog Snr)

dIIlmSG(T) é B SnlriLnoo 10g snr ’ (80)
while D-M tradeoff of the former system is dymse(r) as defined in (67).
The following theorem establishes that the equality holds in (67).
Theorem V.2:
donmse(r) = donmse(r) = (M = N +1) (1= ) (81)
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Proof: Tt is easy to see that (cf. (66))

N
Pout,mmse(snr) > P (Z log(1 + pmmse,n) < log snr) . (82)
n=1
Consequently,
Cimrnse(r) > dmmse(r)- (83)

Let us denote the sum of the mutual informations between channel input and the output over the N

substreams of an MMSE equalizer as

N N
snr
Imse = IOg(l + pmmse,n) = log ( " 1 ) . (84)
> NG

Let H*H = VA2V* be its SVD with )\% > > )\?\, as the ordered diagonal entries of A?. We can

rewrite (84) as

(A2 + LI

snr

nmme—-§:1 ( T T ) , (85)

where v,, is the nth column V*. Recall from Theorem I1.2 that V is a Haar matrix and is independent

of A. Since

-1 N
<M+WQ Vo= > |oaiPOF +snr™) 7 > Juan PO +snr )7 (86)
=1

where vy; is the ith element of v, the mutual information of the nth substream can be bounded as

1+ X\
log snr _ < log <+N2”r> . n=1,---,N, (87)
vi(A2+ 1D v, v |
and hence
<Zl l—i—)\Nsnr (88)
mm (6] .
se g "U N‘Q

Hence, we can upper bound the D-M gain tradeoff

~ logP (Nlog(l + A%snr) — Zflvzl log [uan|? < rlogsnr)
dmmse(r) < — lim .

89
snr—o0 log snr (89)

Since [vin van ---vnn]T is a column of the Haar matrix V*, |v,n|? has the pdf given in (69), we

can obtain after some routine calculations that

N-1 1
E[log [vnn|?] Z:l n
n=

Because |v,n|’s have the same pdf,

N
E Zlog|vn]\;|2] -N
n=1

N-1
2E (90)

S|

n=1
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which is a negative constant. Next, consider the following set inequality which allows us to further

lower bound Pyt mmse(snr),

N
{/\N, {Joan 23, : Nlog(1 + A%snr) — Zlog lonn|? < rlogsnr}

n=1

N
o {\w, {Jonn 23N, - Nlog(1 + A%snr) < rlogsnr + E}nN {Zlog|vnN|2 > E} . (91)

n=1

Using the statistical independence between Ay and {|v,n|*}Y_; we have

N
P (Nlog(l + A%snr) — Zlog luan | < rlogsnr)

n=1

N
> P (Nlog(l+ \jsnr) < rlogsnr+ E) P <Z log |vnn|? > E) . (92)

n=1

Hence, (89) can be further bounded as

logP (N log(1 + Aysnr) < rlogsnr + E) + logP <Z£{:1 log v, n|? > E)

-1
dmmse(r) < snlrlinoo Tog snr (93)
Since P (Zgzl log [vpn|? > E) is a positive constant independent of snr, we have
_ log P (N log(1 + Ajsnr) < rlogsnr + E
() < — lim ogIP (N log( snr) < rlogsnr )
snr—o00 log snr
_ log P (N log(1 + A3snr) < rlogsnr)
o snrlinoo log snr
log P ()\?\, < snr%A)
= — lim . (94)
snr—o00 log snr
By Theorem II.3, we obtain the upper bound
dmmse(r) < (M =N +1) (1= 1), 1<r<N. (95)
Combining this with (67) and the bound (83), we have that the D-M tradeoff of MMSE is
7 r
dmmse('r) = mmse("”) = (M — N+ 1) (1 - N) (96)
and the theorem is proved. |

At first glance, the conclusion that even considering the lower bound on outage probability in (82)
does not improve system diversity gain is rather surprising. Since the N substreams usually have
distinct output SNRs (even if they have identical marginal distributions), it seems unlikely that all the

N substreams are in outage simultaneously. Note that I is the mutual information rate realized
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in a parallel channel that results from fixing the receiver front-end to be the linear MMSE equalizer
with the transmitter using this knowledge to code across the N substreams. One might expect to
achieve an N-fold diversity gain with such coding compared to using independent coding across the
antennas. Theorem V.2 however implies that the output SNRs of the N substreams are actually highly
correlated. This point can be seen from (87); if Ay < snr™!, then the mutual informations in all the
N substreams tend to be small.
Corollary V.3: For both ZF and MMSE, the N substreams, ranking from the strongest to the
weakest, have diversity gain of their individual outage probabilities to be all equal to M — N + 1.
Proof: We first consider the MMSE case. Suppose that the strongest substream, with output

SNR pmax, has diversity gain dyax > M — N + 1. According to (96), dmmse(0) = M — N + 1. Denote

the mutual information Iymse(snr) 2 25:1 log(1 + pmmse,n) > 10g(1 4 pmax). Then

_ lim log P (I;ymse(snr) < const) > im log P (log(1 + pmax) < const) S MoN+1,

snr—oo log snr snr—oo log snr

where const stands for a finite constant. Note that the leftmost term of the above equation is equal to
dmmse(0) = M — N + 1, which leads to a contradiction. Thus dyax < M — N + 1. On the other hand,
suppose the weakest substream has diversity gain dpi, < M — N + 1. With the same but independent
coding applied to all the substreams, the overall system outage probability would be dominated by
that of the weakest substream, which is of order snr=%min It implies that dymee(0) < M — N 41, which
also leads to a contradiction. Therefore dy;, > M — N + 1, and we conclude that all the substreams

must have the same diversity gain M — N + 1 for the linear MMSE equalizer. The argument for the

case of ZF is straightforward given the above. |

C. D-M Gain Tradeoff of V-BLAST with Channel-Dependent Ordered Detection

Based on Corollary V.3, we are ready to answer the long standing open question as to what really
is the D-M tradeoff of V-BLAST with channel-dependent ordered decoding.

In contrast to the linear equalizers which decode the N substreams simultaneously, the V-BLAST
equalizer applies successive nulling and interference cancellation to recover the substreams one by one.
At each step, the V-BLAST estimates one substream according to the criteria of ZF or MMSE and then
eliminates the estimated component from the received data. Hence at the next step, the substream
to detect is subject to one less interferer [29]. We refer to the V-BLAST based on the ZF and MMSE

criteria as the ZF-VB and MMSE-VB, respectively. The output SNRs of the substreams estimated by
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the ZF-VB or MMSE-VB are closely related to applying the QR decomposition to the channel matrix.
In particular, denoting the QR decomposition H = QR, the ZF-VB yields N substreams with output
SNRs (cf. [3], [13])

Paf—vbn = r2 snr for 1<mn <N, (97)

where 7p,,n = 1,..., N are the diagonal entries of R. ¢ Similarly, the MMSE-VB yields N substreams
with [29], [30]

Pmmse—vb.n = 7 snr—1 for 1<mn <N, (98)

o H
where 7, n = 1,..., N are the diagonal entries of R yielded by the QR decomposition =

snr 21
Qf{ Because the IV substreams employ independent SISO codes, the substream corresponding to the
lowest output SNR is the bottleneck of the overall system [31]. One remedy of this undesirable effect
is to apply channel-dependent ordering [32][2]. The channel dependent ordering can be represented
by a permutation matrix IT (this is actually a function of H but we don’t write II(H), for simplicity)

and the output SNRs of the substreams obtained via ordered V-BLAST are therefore dependent on

HIT oo
the QR decompositions HIT = QR and . = QR. The permutation matrix is chosen
snr— 21

such that minj<,<n{r2,} (or minj<,<y{7%,} in the MMSE-VB case) is maximized among the N!

2

a . 2 2
max — Maxyy mlnlSnSN{rnn} and r

min

2

= ax and

. A . . v
permutations. Define r £ mingg miny<,<ny{r2,}. And 7

2

72 . are similarly defined with r2,, replaced by #2,,.

Then with any ordered detection the D-M tradeoffs of ZF-VB and MMSE-VB are sandwiched by

log P (log(1 + r2;,snr) < + logsnr) log P (log(1 4 rZ,,4snr) < % logsnr)

— lim < dy—vp(r) < — lim
snr—oo log snr snr—oo log snr
(99)
and
log P (log(#2 . snr) < % logsnr log P (log (2, .snr) < + log snr
o hm g ( g(rmln ) N g ) S dmmsefvb(r) S o hm g ( g(rmax ) N g ) ’
snr—oo log snr snr—oo log snr
(100)
respectively. It is not difficult to show that with detection ordering IT
1 1
2 2
r = and 7 = . 101
NN (MTHAHID) vy NN (ITHAHIL + L1)~Yyy (101)

5To make the QR decomposition unique, the diagonal entries of R. are positive.
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By choosing different IT, 7%, and 7% can take on one of N different values:

1 1

2 02

= d = ,1<n<N. 102
NN [(II*II)_l]nn and  Tyy (H*H + 1 1p- ] SN (102)

snr

Comparing (97) (98) to (12) (13) and invoking (102), we see that the first detected substream using
ZF-VB (or MMSE-VB) has the output SNR taken from p,f, (O pmmsen), for 1 < n < N. Define
TJQVN,max = maxi<n<N [(H*Hl)—l}nn and TJQVN,min = minlSnSN [(H*Hl)—l}nnﬂ while %?VN,maX and fJQVN,min

are defined similarly. We show next that

Trznax < TJ2VN,max and 7ﬁfnin = 7/‘]2\/N,min' (103)
By definition,
1
2 2
Th ax = Hi_EIiX ém?N{T""} maX {TNN} 1£nna<XN (E-H) 1], TN N,max (104)

Hence the first inequality of (103) is proven. Again by definition, we can prove that

r12nln - Hﬁnlinlgjv{rnn} < mln {TNN} - TNN min* (105)

Moreover, suppose r n < rN N.mins Which means that for some permutation II, rmm = r2, for some
n # N. Then we can always find a new permutation I matrix such that the nth column of HIT is
moved to the Nth column of HII, and the QR decomposition HII = QR yields 7:]2\[ N < r2,=ri. <
2 NN.min: Where 72 N < r2. because moving the column to the right always reduces its corresponding

74 as it has more interference to suppress. Now we have reached a contradiction and hence proven

that r2, = r% Nmin- Using the same argument, we can prove that

%) %)
" max S TNN max and Tmin = TNN min* (106)

Let us first focus on the MMSE-VB case. Recall that the V-BLAST applies the same but independent

coding. Therefore, with spatial multiplexing gain r, the outage probability of V-BLAST is [31]

P <log( mlnN 2 snr) < % log snr) :

According to (100) and (106), we obtain that

~ logP <log(7*]2VN7minsn r) < 4 logsn r) ~ logP <log(7*]2VN7maxsn r) < 4 logsn r)
— Snlrlmoo o < dmmse—vb(r) < — lim ] )
- gsnr sNr—o00 ogsnr

(107)
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or equivalently,

log]P <%]2\7Nmin < snr%_1> 1OgP (%]ZVNmax = snrﬁ_1>
— lim < dimmse—vb (1) < — lim

snr—oo log snr - snr—oo log snr

(108)

By Corollary V.3, we have

logIP (f]QVNmin < snr%_1> log P (%?VN,maX < snr%_l)

r
I —— 1 (M -N+1)(1-7).
Shr—to log snr ST 0o log snr ( +1) N

(109)

Hence, for any channel-dependent detection ordering IT
dypmse—vb (1) = (M — N + 1) (1 - %) , 0<r<AN. (110)

Clearly, in similar vein, we can obtain

dyi_vb(r) = (M — N + 1) (1 - %) , 0<r<N. (111)

Now we have established the following theorem.

Theorem V.j: For both ZF-VB and MMSE-VB with any channel-dependent detection ordering, the

D-M gain tradeoff of the overall system is

b (1) 2 dimse—vb (1) = dyr—op () = (M — N + 1) (1 - %) , 0<r<N. (112)

Theorem V.4 stands for the final answer to the long-standing open problem on whether optimal
ordering in V-BLAST improves system diversity gain. Our answer is "no”.

The result that the maximal diversity gain of the ZF-VB is M — N 4 1 even with detection ordering
was first established in the conference version of this paper [11]. This result was also reached by Zhang
et. al. in [33], where they further “predict that the whole diversity multiplexing tradeoff curve will
not be improved by optimal ordering”. However, their result can not be extended to the MMSE-VB
case.

We conclude this section with the following corollary.

Corollary V.5: In the asymptotically high SNR regime, the overall outage probability of V-BLAST
is dominated by that of the first detected layer for any detection ordering, .

Proof: Suppose there exists an ordering technique 7 which yields the n-th (n > 2) detected layer
with diversity gain D < M — N + 1, i.e., its outage probability Py (snr) oc snr™® in the high SNR
regime. With a random detection ordering, there is % chance that the random ordering coincides

with 7. Hence the outage probability of the n-th layer is no less than %Pout(sn r) and therefore its
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diversity gain is no greater than D < M — N 4 1. However it is well known that the V-BLAST with
random detection ordering yields the n-th detected layer with diversity gain M — N + n [14], which
is strictly greater than D, which leads to a contradiction. Hence for any ordering technique, the n-th
(n > 2) detected layer has diversity gain strictly greater than M — N + 1. Since the first detected

layer has diversity gain M — N + 1 by Theorem V.4, the corollary has been proven |

VI. A CLOSER LOOK: OUTAGE PROBABILITY AND CODING GAIN

In this section, we consider the case where independent coding is applied to the N substreams. We
analyze the outage probability of the substreams. Despite the pessimistic conclusion of Section V with
respect to the diversity gain, we show that there is a remarkable SNR gain due to applying the optimal
detection ordering in the V-BLAST architecture which we quantify next.

To facilitate the analysis, we rewrite the output SNRs of ZF

snr
= 113
and MMSE
snr
Pmmse,n = [(H*H T San)fl]nn —1. (114)
According to (86) we have the upper bound
snr
mm < —1. 115
Pmmse,n [vnn |2(A, + snr—1)—1 (115)
Similarly, we obtain
A2
Jsnr (116)

Patn < .

Given the target rate R of the nth substream, its outage probability is

P (R.snr) = P(log(1+ pyn) < R)

snr
= P| —————<2f-1 117
(vazl [onil 2272 ) o

> P|— <2 1) 2pd (R snr). (118)
‘UnNP)‘N

if ZF is used, and for MMSE

Pmmse(R’ snr) = P (log(l + ,Ommse,n) < R)

out,n
snr
- <2 119
(Zi\iﬂvmp(/\?Jrsnr—l)—l ) (119)
snr
= F <|vnN!2(/\§V a1 2R> = Pouin (R, snr), (120)
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With regard to the lower bounds (118) and (120) , we have the following lemma.

Lemma VI.1:
PA (R, snr
m M =1, (121)
snr—oo P2 (R, snr)

out,n

and

P (R, snr
out,n ( ) -1 (122)

im ——
mmse
snr—oo Pout,n <R7 Snr)

That is, the lower bounds in (118) and (120) are asymptotically tight at high SNR.

Proof: The proof is rather technical. We relegate it to Appendix B. |

We are now ready to establish the following theorem which quantifies the SNR gain that accrues by
applying the optimal decoding ordering to the V-BLAST architecture.

Theorem VI.2: Given the input SNR snr and the target rate R for each substream. Denote Pjﬁhmin

and P™s¢ (R, snr) the outage probabilities of the substreams with the highest output SNR obtained

out,min

using ZF and MMSE, respectively. Then in the high SNR regime,

’ snr .
melt,min <R7 W) = Potflt,n(R7 Snr)7 Vn, (123)
and
e (B2 ) < Paie(Rysnr), i, (124)

where the approximation in (123) is asymptotically accurate as snr — oo (in the sense that the limit
of the ratio of the two probabilities tends to unity with increasing SNR). Comparing to the fixed
decoding order, applying the optimal decoding order yields 10log;q N dB SNR gain for ZF-VB, and
more than 10log;, N dB SNR gain for MMSE-VB.

Proof: Due to (121) and (122), we can closely approximate the outage probability of the nth
substream by

sz

out,n

Ay 2R 1N 4
(R,snr) ~P <o) " Pz (R, snr), (125)

‘ UnN | 2 S out,n

and

Pgﬁ??zem,snr):p(w 2R> —

o) L R 126
v |2 snr Ltm( ,snr), (126)

at high SNR. Define u £ min{|v,y|?,1 <n < N}. Then

zf )‘?\/ 2f —1 A pzf
P, (R,snr) P | —~<— | =P (R, snr), (127)

out,min w snr out,min

and

out,min u snr out,min(R7 snr). (128)

mmse (R, snr) ~ P (A?V —I—snrfl < 2R> A pmmse

(R, snr)
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Recall from Lemma V.1 that |v,x|? ~ Nu, Vn, which implies that

2 o _ 1 A2 oft _ 1
PN ) =P N . 12
( w snr/N> <|vnN|2 < enr > (129)

It follows from (129), (127), and (125) that

snr
Pitmin (B, 55 ) = Pty (R, sn), (130)
and hence
zf snr zf
Pout,min (Rv W) = Pout,n(Rv Snr)' (131)

Because the approximations in (127) and (125) are asymptotically accurate as snr — oo, so is the
approximation in (131). Therefore with respect to ZF, we can conclude that the strongest substream
has 10log; N dB SNR gain over an average one. Because V-BLAST applies independent coding to
each layer, V-BLAST is in outage if and only if at least one layer is in outage. It is known from
Corollary V.5 that in the high SNR regime, the outage events of V-BLAST are dominated by those of
the first detected layer. Consequently, the ZF-VB with the optimal detection ordering has 10log;q N
dB SNR gain over ZF-VB with fixed detection ordering.

As for MMSE, according to (128),

snr snr
out i (R, W) =P (1 + Xy <2 u) (132)
= P (N + Aysnr < 28|on,|?) (133)
< P(1+A3snr < 28joy,|?) = Poutn (R, snr). (134)

As the approximations in (126) and (128) are asymptotically accurate at high SNR, we can see that

NI snr Jeshast
e (1) < Pamie (R, sn), (135)

which implies that the SNR gain of strongest substream over an average substream is more than
10log;o N dB. Moreover, it can be seen that the gap between (133) and (134) gets larger as N
increases. |

Finally, we remark that the key fact used to determine the coding gain advantage of ordered
detection is that |v,n|?> ~ Nu, where v,y is the (n, N)th entry of the unitary matrix V*, and
u = min{|v,n|%,n = 1,--- ,N}. According to Lemma V.1, |v,y|?> ~ Nu as long as V is a Haar
matrix. If the columns of H are independent, then the distribution of H is invariant under the right
multiplication of a unitary matrix. Hence V is a Haar matrix. We see that Theorem VI.2 still holds

even the rows of H are correlated but the columns of H are statistically independent.
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VII. NUMERICAL EXAMPLES

In this section, we present several numerical examples to validate the preceding theoretical analysis.

M—N+2 :
N71+ Nsnr agaINst

Figure 1 presents the quantile-quantile (qq) figures for the distribution of

M—-N+2
N-1

Moo Which is of F-distribution (see 35). We see that the F-distribution approximation works
very well for all cases in the high SNR regime. We also see that the approximation is less accurate
when N = M. The explanation is as follows. It is known that for M = N, the channel matrix tends
to be more ill-conditioned thus the smallest diagonal entry of A,, (see (26)) is close to zero. Therefore
the convergence of (26) to the limit (28) is slower. For the case of N = M/2, the F-distribution

approximation is very accurate even for a moderate SNR of 10 dB.

M=4,N=4 M=16,N=16
14
15 SNR = 30 dB SNR = 30 dB
- = =SNR=20dB 1211 = = =sNR=20dB
3 | SNR = 10 dB 3 ol SNR = 10 dB
Z 10 45 degree line = 45 degree line P
] ©
> s 8 -
sy L - o
N <t S 6
£ 0 L g
g 5 : g a4t L7
w w | L7
o) A
0 0
0 5 10 15 0 5 10
F-quantiles F-quantiles
M=4,N=2 M=16,N=8
4
8 = = = SNR =20dB ,' = = =SNR=20dB
""""" SNR =10dB ,/\w‘ ‘e SNR=10dB
E 45 degree line PR E 3 45 degree line (g‘
= S = {
£6 25 £ PRe
< P < ¢
= 2 > £
=) 2" o2 P
g 4 o 5 e
= (\* =1 P
E PR = P2
2 & W Kd
Py #
. K
e i
0 0
0 2 4 6 8 0 1 2 3
F-quantiles F-quantiles
Fig. 1. Quantile-quantile plots for Mjgflwnsm. The range of the quantiles is 1% - 99%.

In the second example, we consider an i.i.d. Rayleigh channel with M =5 and N = 4. We calculate
the INRs in the output of MMSE based on 10* Monte Carlo trials. Figure 2 shows the INRs at different
input SNRs, in which each curve represents the 10* INRs sorted in the non-decreasing order. This
simulation result agrees with Lemma II1.2; the INR is inversely proportional to the input SNR.

Figure 3 compares the uncoded error probabilities of ZF and MMSE equalizers in a 4 x4 channel with
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0 M=5N=4
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Fig. 2. INRs in the output of MMSE with input SNR equal to 20, 25, 30, 35, and 40 dB. The results are based

on 10* Monte Carlo trials of the channel matrix. M =5, N = 4.

BPSK input. We see that the error probabilities of MMSE obtained via averaging over 10° Monte
Carlo simulations match extremely well with the high SNR approximation of (46) for a moderate
SNR (snr > 10 dB). Moreover, as predicted in (50), there is a non-vanishing gap between the error
probability curves of MMSE and ZF.

Figure 4 compares the outage probabilities of ZF and MMSE equalizers in an i.i.d. Rayleigh channel
with M = 6 and N = 5. We consider the three cases where the target rates are one, two, and
four bps/Hz per substream. Similar to Figure 3, the outage probabilities of MMSE obtained via
averaging over 107 Monte Carlo simulations (represented by +7) match exactly at high SNR with
the approximation in (52) which is obtained via numerical integration (represented in solid lines).
Although for fixed R MMSE has a non-vanishing SNR gain over ZF, the gap becomes smaller as
R increases. Figure 4 also illustrates that the e-outage capacity is the same for MMSE and ZF at
asymptotically high SNR.

In the fifth example, we consider a channel with M = N = 3. Suppose N independent capacity-

achieving codes are applied to each substream, and the target rate is R = 3 bps/Hz for each substream.

Pmmse

and out,min?

The four solid lines in Figure 5, from top to bottom, represent Pglflt,n, Pitm s Pglflt min

respectively. The four dashed lines underneath the solid lines are the corresponding lower bounds,

ie., PA  pmmse  puf and Pmse  We see from Figure 5 that (i) all the lower bounds are

out,n> * out,n » ~ out,min’ out,min"
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M=N=4
Lk T T T T T T T
10" ~< E
10_2 E_ _E
10°k .
a F ~ 3
eI AR 1
10_4 E_ _E
10k —— MMSE (high SNR approx.) _
E -=-=-ZF ]
C —+— MMSE (simulation) ]
10°° l l l l l l l
0 5 10 15 20 25 30 35 40
SNR

Fig. 3. Error probabilities of ZF given in (39) and MMSE (Monte Carlo trials and high SNR approximation
given in (46)). M = N = 4.

Outage Probability
LI IIIIIII

-10 0 10 20 30 40
SNR (dB)

Fig. 4. Outage probabilities of ZF given in (51) (represented by dashed lines) and MMSE via Monte Carlo
trials (+) and high SNR approximation given in (52) (solid line). M =6, N = 5.

asymptotically tight as SNR increases, (ii) the gap between P and P4

out,min out,n

is 10log;g N = 4.77

dB, (iii) the coding gain of P™™¢ over P ig significantly larger than 4.77 dB. This numerical

out,min out,n
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example agrees with Theorem VI.2.

10°
10™
2
5
©
8. 2
& 10
(4]
{@)]
©
s
o)
10°°
107
0 5 10 15 20 25 30 35 40
SNR (dB)

Fig. 5. Outage probabilities left’l, PRIYE, ijlt’min, and PjUi"ih . The solid lines are the true values and the

dash lines are lower bounds. M = N = 3. The result is obtained via averaging over 10° Monte Carlo trials of

the channel matrix.

Figure 6 adopts the same simulation layout as that of Figure 5 except that the channel dimensionality

is changed to M = N = 5. As we can see from Figure 6, the gap between PZ and Pth,l is

out,min ou

10logo N = 6.99 dB, and the SNR gain of out.min Over Poli’e is even more significant compared to

Figure 5. This result agrees with our analysis of (133) and (134).
In the final example, we consider an i.i.d. Rayleigh channel with M = N = 4. We compare the out-

age probabilities of the strongest substreams (P2, . = pmmse ) their lower bounds (P4, . = pmmse )

along with the outage probabilities of ZF-VB and MMSE-VB with optimal detection ordering. It is

and P™™¢ are also tight lower bounds to the

; f
seen from Figure 7 that the lower bounds to P? out, min

out,min
outage probability of ZF-VB and MMSE-VB with optimal detection ordering, respectively. Hence
theorem VI.2 can be used to predict the SNR gain of ordered detection in V-BLAST architecture.
This example also validates Corollary V.4; the detection ordering cannot improve the diversity gain,

which is M — N + 1 = 1 in this example, although MMSE-VB manifests higher diversity gain in the

low to moderate SNR regime (snr < 15 dB).
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Fig. 6. Outage probabilities P(ift’l, e, PAL s and Potmin- The solid lines are the true values and the

dash lines are lower bounds. M = N = 5.
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Fig. 7. Outage probabilities P

out,min’

and pPmmse - 7ZF-VB and MMSE-VB with optimal ordering. The dash

out,min’

and PMmse M = N = 4. The result is obtained via averaging over 107

s zf
lines are the lower bounds P, out.min-

out,min

Monte Carlo trials.

VIII. CONCLUSIONS

In this paper, we have analyzed the performances of the zero forcing (ZF) and minimal mean squared

error (MMSE) equalizers applied to an M x N wireless multi-input multi-output (MIMO) systems,
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in terms of output SNR, uncoded error and outage probabilities, diversity-multiplexing (D-M) gain
tradeoff, and SNR gain. We show that there is a gap between the output SNRs of ZF and MMSE
equalizers, which converges with probability one to a random variable of scaled F-distribution as
input SNR goes to infinity. Based on this result, we can accurately approximate the uncoded error
probability of MMSE equalizer via numerical integration rather than time-consuming Monte-Carlo
simulations. For coded systems, we show that although given fixed target rate MMSE has a non-
vanishing SNR gain over ZF, the e-outage capacities of MMSE and ZF coincide in the asymptotically
high SNR regime. We also prove that even with perfect coding across the N substreams, the D-M gain
tradeoff of the MIMO system using either ZF or MMSE equalizer is d(r) = (M — N +1) (1 - %) As
an important corollary, we prove that the V-BLAST equalizer (vertical Bell Labs layered Space-Time)
has a maximal diversity gain of M — N + 1 even with optimal order detection. Moreover, we show
that for the ZF equalizer, the strongest substream has 10log;y N dB SNR gain over an average one.
For MMSE, this SNR. gain is much larger than even that. This analysis also quantifies the SNR, gain

of applying ordered detection in V-BLAST architecture.

APPENDIX A

Proor or LEMMA II1.2

According to the matrix inverse lemma,

1 -1
<H*H + 11) =snr [I —H* (11 + HH*) H] .
snr snr

Therefore we can rewrite the MMSE filter matrix given in (11) by

-1
Wimee = snr [I - H" (sirl + HH*> H] H*

1 —1
- H <HH*+I> . (136)

snr

Denote w}, the nth row of Wyse, which is the MMSE nulling vector for the nth substream. Then
* 1 ! * 1 —1
w, = ( HH* + —I h, «x (H,H, + —I) "h,, (137)
snr snr

where h,, and H,, are defined as in (14). If we normalize w,, such that w} h,, = 1, then

w, — (H,H; + L1)"'h,

~ hi(H,H: + L1)-lh,’

snr

(138)
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Without loss of generality, we assume here that 02 = 1 and 02 = $ Applying w,, to the received

data vector y (cf. (1)), the power of noise is

b}, (H,H;, + ;=1)"h, (139)
snrlhy (H,H: + L 1)~1h,|?’

snr

1
Pns,mmse = ||Wn||2 =
snr

and the sum power of noise and interference from the other N — 1 substreams is

Pns,mmse + Pintf,mmse =w, (Han + San> W = hfl(HnH; T %I)_lhn (140)
JFrom (140) and (139), we have the ratio
Pns,mmse + Pintf,mmse _ Snrh;(HnHz + #I)ilhn (141)

Pns,mmse h;kl (HnH;fL + LI)i2hn

snr
Denote H,, = U, A,V the SVD of H,,, where U,, € CM*(N=1 and A,, € RV-Dx(N=1Then the
SVD of H,H} + L1is

snr

1 - A2 + $1N71 0 .
H,H' + —I=[U,'U,] (U, U0, (142)
snr 1
0 eI —N+1
Now we can rewrite
1 \! 1 \! o
hy (HnHZ + I) h, =h;U, <AZ + I) Urh,, +snrhy U, U’ h,, (143)
snr snr
and
1.\ 2 1.\ 2 o
h; <HnH:L + san) h, =h U, (Ai + san) Urh, + snr2hZUnU;‘Lhn. (144)

Applying (143) and (144) the fact that U, U}, = Py , we obtain from (141) that

_ —1
Pns,rnmse + Pintﬂmmse _ hiLPJI:Inh” + snr 1h;kLU” (A’I2’L + $I) U;;h” (145)
Pas,mmse h;P4 by, +snr2h;U, (A2 + LT) 7 Ush,
and
— * -1 * — * -2 *

Pintf,mmse _ snr 1hnU” (A% + $I) Unh" —snr Qh”Un (A% + $I) Unhn (146)

Pns,mmse h:ibe:Inh” + snr—2h;§Un (A% + #I) —2 U:Lh”

* 1 — *

< DIULAG £ 1) Uz, 147)

snr - h;*LPﬁn h,
It is easy to see that the upper bound of (147) is asymptotically tight as snr — co. We note that the
numerator and the denominator in (147) are exactly nsnr,n (see (26)) and pu,, (see (15)), respectively.

The Lemma, is proven.



APPENDIX B

Proor or LEMMA VI.1
We first prove (121). According to (117), we can rewrite

sz A%V 1

(R,snr) =P

out,n

Because A\2’s are in non-increasing order, we have

z T
i=1 )\%V—l N )\?V 1
Combining (148) and (149) yields
A2 1 2R 1
out n( ,Snr) — |UnN|2 1+ )\?V 1 < snr
lonNT? A%,
A% 2k 1
_ f N 2
= Pozutn(R,snr) +P oV i A

We now focus on the second term of the right hand side of (151)

R_ A
23 2 2
P N> AN1<—2 [on ]
|un | snr S
[v2 | 2F—1
2R -1 3 1\ 2%-1
= P < Ao <1+ A <
snr |vnN| logsnr /) snr

)\2

A2 1\ 2f-1 TonnT?
P [ s <1+ ) Ny < e
~1

of 1 2 1 ot _ 1 oR
< ]P’( < N <<1+ > >+}P’<)\?V_1<(1+logsnr)

snr A?\/ snr

log snr
[v2 | 2B -1

|UnN|2

snr |vnn |2 log snr snr

To obtain (154) from (153), we have used the following two facts. First,

snr

’fUnN|2 ‘ 1+ A ZN—l |[ni |
U, =

N1 <

2f 1 Y 1 2f 1
P < N < (1 + ) A <
log snr

snr o |2

2f—1 X 1\ 2f-1
< P < o<1+ :
snr [vn |2 logsnr ) snr

Second, because

2
A]\7
‘U'nN‘Q

)\2
N snr _ 1
[v2 | 28 —1
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(148)

(149)

(150)

(151)

(152)

(153)

(154)

(155)
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. . . A2
is a decreasing function of ﬁ, for
n

2% ) 1 2ft 1
NS (1 ,
N logsnr ) snr

we have , i
A 1 2R 1
\UnxP (1 + logsnr) snr oR _ 1
3 < = (1 + logsnr) ——.
v s g 14 L )28l snr 4 snr
[ p | 2R -1 logsnr ) “snr 2F_1
Hence,
)\2
A3 1 \2R-1 A
P N> (1+ A < el
|vnN| log snr snr M sor 4
[v2 | 28 -1
Y 1 ok _q oR _ 1
< P> (1 A2 141
B <|vnz\/|2 g ( " logsnr> sy -1 < (1 logsnr) — >
< P(23_, < (141 27 1
N N=1 0g snr) snr ' (156)

Therefore using the inequalities (155) and (156), we obtain (154) from (153).

Combining (151) and (154), we have

PA. (R,snr) <P A <1+ ! 201 +P (X ;< (1410 snr)2R_1 (157)
out,n = - v |2 logsnr ) snr N1 & snr

According to Theorem I1.3, as snr — oo, the second term of the above equation

; (158)

<(2R ~1)(1 + log Snr)>2(MN+2)+o(1)

P(X ;< (1+1o snr)QRi1 =
N-1 & N snr

snr

while the first term

A3 1\ 2f-1 1\ 2f-1
P25 <(1+ > P(Xy<cll+ P(|u,n|? > ¢)
|un | logsnr ) snr logsnr /) snr

oR _ 1 1 M—N+1+o(1)
- K. < <1 + )) : (159)

snr log snr

) - cM=N+1ig also a finite

where c is some finite positive constant, say ¢ = ﬁ, and K = P(lv,n]? > ¢
positive constant.

It follows from (158) and (159) that given fixed R,

2R

P ()‘?\/—1 < (14 logsnr) sT‘f)
lim =0

= A2 oR_1
snr—oo0
P ( N_ < )

[vnn| snr
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Hence
A2 R_ R
P (R, snr) _ P (ﬁ < (1 + loglsm) 2sml> +P ()\%V_l < (1 + logsnr) —QSnrl)
lim —————— < lim = -
snr—o0o @(R,snr) snr—o00 P |vnx|2 < 25n_rl>
A3 1 2R_1
. P (ﬁ < (1 + logsnr) snr >
= lim -2 o
SNr—oo —
P (\vnj\\;\z < snr >
snr—oo log snr

lim out,n
snr—oo P2 (R7 snr) —

out,n

(161)

Combining (160) and (161), we have proven (121).
The techniques used above in the proof for (121) can be equally applied to prove (122). We omit it

for simplicity.
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