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Equalizers for MIMO Systems: An In-Depth

Study of the High SNR Regime
Yi Jiang Mahesh K. Varanasi Jian Li

Abstract

This paper presents an in-depth analysis of the zero forcing (ZF) and minimum mean squared error (MMSE)

equalizers applied to wireless multi-input multi-output (MIMO) systems with no fewer receive than transmit

antennas. In spite of much prior work on this subject, we reveal several new and surprising analytical results in

terms of the well-known performance metrics of output signal-to-noise ratio (SNR), uncoded error and outage

probabilities, diversity-multiplexing (D-M) gain tradeoff, and coding gain. Contrary to the common perception

that ZF and MMSE are asymptotically equivalent at high SNR, we show that the output SNR of the MMSE

equalizer (conditioned on the channel realization) is ρmmse = ρzf + ηsnr, where ρzf is the output SNR of the

ZF equalizer, and that the gap ηsnr is statistically independent of ρzf and is a non-decreasing function of input

SNR. Furthermore, as snr → ∞, ηsnr converges with probability one to a scaled F random variable. It is also

shown that at the output of the MMSE equalizer, the interference-to-noise ratio (INR) is tightly upper bounded

by ηsnr

ρzf
. Using the decomposition of the output SNR of MMSE, we can approximate its uncoded error as well

as outage probabilities through a numerical integral which accurately reflects the respective SNR gains of the

MMSE equalizer relative to its ZF counterpart. The ε-outage capacities of the two equalizers, however, coincide

in the asymptotically high SNR regime, despite the non-vanishing gap ηsnr. By analyzing a fictitious parallel

channel model with coding across the sub-channels in terms of the diversity-multiplexing (D-M) gain tradeoff,

we provide the solution to a long-standing open problem: applying optimal detection ordering does not improve

the D-M tradeoff of the V-BLAST (vertical Bell Labs layered Space-Time) architecture. However, by deriving

tight lower bounds to the outage probabilities of ZF and MMSE equalizers, we show that optimal ordering yields

a SNR gain of 10 log10 N dB in the ZF-V-BLAST architecture (where N is the number of transmit antennas)

whereas for the MMSE-V-BLAST architecture, the SNR gain due to ordered detection is even better, and

significantly so.
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I. Introduction

Consider the complex baseband model for the wireless multi-input multi-output (MIMO) channel

with N transmit antennas and M receiver antennas

y = Hx + z, (1)

where y ∈ CM×1 is the received signal and H ∈ CM×N is a Rayleigh fading channel with independent,

identically distributed (i.i.d.), circularly symmetric standard complex Gaussian entries, denoted as

hij ∼ N(0, 1) for 1 ≤ i ≤ M, 1 ≤ j ≤ N . We assume that the number of receive antennas is no less

than the number of transmit antennas (M ≥ N). We also assume that the N data substreams have

uniform power, i.e., x ∈ CN×1 has covariance matrix E[xx∗] = σ2
xIN , where E[·] stands for the expected

value, (·)∗ is the conjugate transpose, and IN is an N ×N identity matrix. The white Gaussian noise

z ∼ N(0, σ2
zI) is also circularly symmetric. The input signal-to-noise ratio (SNR) is defined as

snr =
σ2

x

σ2
z

. (2)

In this paper, we present an in-depth analysis of the performance of the zero forcing (ZF) and

minimum mean squared error (MMSE) equalizers applied to the channel given in (1). The linear

ZF and MMSE equalizers are classic functional blocks and are ubiquitous in digital communications

[1]. They are also the building blocks of more advanced communication schemes such as the decision

feedback equalizer (DFE), or equivalently, the V-BLAST (vertical Bell Labs layered Space-Time)

architecture [2][3], and various other MIMO transceiver designs (see, e.g., [4][5] and the references

therein). Despite their fundamental importance, however, the existing performance analyses of the ZF

and MMSE equalizers1 are far from complete. For instance, it is commonly understood that ZF is a

limiting form of MMSE as snr → ∞. But when the ZF and MMSE are applied to the MIMO fading

channel given in (1), one may observe through simulations that the error probabilities of MMSE and

ZF do not coincide even as snr → ∞. To the best of our knowledge, no rigorous account of such a

phenomenon is available in the literature. As another example, the problem of obtaining the exact

diversity-multiplexing (D-M) tradeoff [6] of V-BLAST with optimal detection ordering still remains

open, and so does the quantification of the gain due to optimal detection ordering. In this paper,

we attempt to provide an in-depth look at the classical ZF and MMSE equalizers with respect to the

well-known performance metrics of output SNR, uncoded error and outage probabilities, diversity-
1In the sequel we refer to the ZF and MMSE equalizers as ZF and MMSE for simplicity.
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multiplexing (D-M) gain tradeoff, and SNR gain.

The major findings of this paper are summarized in the following.

R1 A common perception about ZF and MMSE is that ZF is the limiting form of MMSE as snr →∞.

Therefore, it is presumed that the two equalizers would share the same output SNRs, and consequently,

the same uncoded error or outage probability in the high SNR regime. We show, however, that the

output SNRs of the N data substreams using MMSE and ZF are related by

ρmmse,n = ρzf,n + ηsnr,n, 1 ≤ n ≤ N, (3)

where ρzf,n and ηsnr,n are statistically independent and ηsnr,n is a nondecreasing function of snr. More-

over,

ηsnr,n → η∞,n with probability one (w.p.1), as snr →∞, (4)

where
M −N + 2

N − 1
η∞,n ∼ F2(N−1),2(M−N+2) is of F-distribution.2 Further, the interference-to-noise

ratio (INR) of the nth substream at the output of MMSE (denoted as inrn), is approximately upper

bounded as

inrn . ηsnr,n

ρzf,n
. (5)

with the approximate upper bound being asymptotically tight for high SNR. Since ηsnr,n

ρzf,n
is inversely

proportional to the input SNR, (5) implies that the higher the input SNR, the smaller the leakage

from the interfering substreams.

R2 Using R1, we obtain tight approximations of the uncoded error and outage probabilities of MMSE

which can be evaluated via numerical integration rather than Monte-Carlo simulations. This analysis

also confirms that there is a non-vanishing SNR gain of MMSE over ZF as snr → ∞. Interestingly,

however, the ε-outage capacities of MMSE and ZF coincide in the asymptotically high SNR regime in

spite of the SNR gap between their outage probabilities.

R3 We obtain the following upper bounds of the output SNRs for the ZF and MMSE equalizers:

ρmmse,n ≤ λ2
N snr + 1

u
− 1 and ρzf,n ≤ λ2

N snr

u
, (6)

where λN is the smallest singular value of H and u is a Beta random variable that is independent of

λN with a probability density function (pdf)

fu(x) = (N − 1)(1− x)N−2, 0 ≤ x ≤ 1. (7)
2Given two independent Chi-square random variables a ∼ χ2

m and b ∼ χ2
n. The ratio c = a/m

b/n
is a random variable

with distribution fc(x) =
Γ( m+n

2 )n
n
2 m

m
2 x

m
2 −1

Γ( m
2 )Γ( n

2 )(n+mx)
m+n

2
, where Γ(z) =

∫∞
0

tz−1e−tdt. We denote c ∼ Fm,n [7].
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Based on these upper bounds, we prove that for both ZF and MMSE, the D-M gain tradeoff of a

fictitious parallel channel (with N independent sub-channels) with coding across the N substreams is

the same as that for the ZF and MMSE equalizers applied to the MIMO channel with independent

coding over each individual substream, and this trade-off is given as

d(r) = (M −N + 1)
(
1− r

N

)
. (8)

That is, the SNR gain gap between the MMSE and ZF equalizers cannot be captured by the D-M

gain tradeoff analysis.

R4 As an important corollary of R3, we solve the well-known open problem on the diversity gain of

the V-BLAST architecture with optimal detection ordering [2]. Note that the V-BLAST architecture

can be regarded as employing ZF or MMSE equalizers combined with decision feedback [3], which in

the sequel are referred to simply as ZF-VB and MMSE-VB, respectively. We prove that with equal

rate for each substream and for any order of decoding, both ZF-VB and MMSE-VB have the D-M

gain tradeoff

dvb(r) = (M −N + 1)
(
1− r

N

)
, (9)

which means that the so-called V-BLAST order [2] does not yield an improvement in the D-M gain

tradeoff relative to unordered decoding.

R5 We also derive lower bounds on the outage probabilities of MIMO systems that use ZF and MMSE

(without decision feedback). The lower bounds are shown to be asymptotically tight for high SNR.

Based on these bounds, we prove that for ZF the strongest substream has a SNR gain of as much as

10 log10 N dB over an average one at high SNR. For MMSE, the SNR gain is even higher, and that too

by a significant margin. When applied to systems with decision feedback, as in V-BLAST, because

the overall outage probability is dominated by that of the first detected substream, this result also

quantifies the coding advantage of optimally ordered decoding over fixed order decoding.

The results R1 and R2 are on the distribution of the output SNR of the MMSE equalizer, the

asymptotic normality of interference-plus-noise at its output, and the coded (outage) and uncoded

error probability performance. Such problems are also investigated in [8][9] for the asymptotic property

of linear multiuser receivers. While their work focuses on large systems, we study finite systems with

asymptotically high SNR. The influence of non-Gaussian interference upon error probability in finite

CDMA systems is studied in [10] which shows that the larger an interfering user’s amplitude, the

smaller its effect on bit-error rate [10]. The (tight) upper bound of INR given in (5) yields more
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insights into this observation. The output SINR decomposition (3) was proposed in the conference

version of this paper [11]. In the independent work [12], the authors show that such a decomposition

is possible even if the columns of H are correlated (but the rows need to be independent). In this

case the pdf of the output SINR ρmmse,n is very involved. The approach of [12] is to approximate

the first three asymptotic moments of ηsnr,n as M, N → ∞, and then approximate it by a Gamma

(or generalized Gamma) random variable. Our strategy is to study the exact distribution of ηsnr,n at

asymptotically high SNR, which leads to a more concise approximation.

The results R3, R4, and R5 are motivated by the problem of the D-M tradeoff of V-BLAST with

ordered decoding. Although this problem has inspired much research, previous attempts have only

achieved partial success and that too for the ZF-VB. For instance, it is shown in [13], [14] that optimal

ordering does not improve the diversity gain of ZF-VB but that it provides a 3 dB SNR gain when

there are two transmitting antennas (N = 2). The extension to the case of N ≤ 4 can be found in

[15]. It is also shown in [13] that a suboptimal column-norm ordering technique proposed in [16] does

not improve the diversity gain for arbitrary N . Note that a (loose) upper bound to the D-M tradeoff

of ZF-VB with optimal order detection is given in [6] to be

dvb(r) ≤ (M − 1)
(
1− r

N

)
, 0 ≤ r ≤ N. (10)

The difficulty of this problem lies in the fact that the distribution of the layer gains becomes ex-

tremely complicated due to the channel-dependent detection ordering. We circumvent this difficulty

by identifying the sharp upper bound given in (6). Indeed, the result R5 is also related to the bound

(6).

The rate/capacity performance of ZF and MMSE receivers applied to the point-to-point fading

MIMO channel are addressed in [17], where the authors show that the average capacity loss due to

using the linear ZF or MMSE equalizers converges to a constant as SNR increases. Similar conclusions

with regard to the sum rate are made in [18] and [19] in the context of the multi-access channel

(MAC) and the broadcast channel (BC). Combined with these results on rate/capacity performance,

this paper provides a more detailed picture of the performance of ZF and MMSE applied to both

single user and multiuser MIMO fading channels, especially in the high SNR regime.

The remainder of this paper is organized as follows. Section II introduces some preliminary results

to be used in the paper. In Section III, we analyze the output SNR of MMSE. Section IV derives the

uncoded error and outage probabilities of MMSE at high SNR. The D-M gain tradeoffs of the system
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using ZF and MMSE are derived in Section V. Based on a tight lower bound to the outage probabilities

of the N substreams, we derive the SNR gain of optimal detection ordering for V-BLAST in Section

VI. Section VII presents the numerical examples validating the theoretical analysis. Conclusions are

made in Section VIII.

II. Preliminaries

A. Basics of ZF and MMSE Equalizers

Consider the MIMO channel model given in (1) where the N data substreams are mixed by the

channel matrix. The ZF and MMSE equalizers can be applied to decouple the N substreams. The ZF

and MMSE equalization matrices are (see, e.g., [20])

Wzf = (H∗H)−1 H∗, and Wmmse =
(
H∗H +

1
snr

I
)−1

H∗. (11)

Left multiplying the received signal vector y by Wzf and Wmmse, we obtain N decoupled substreams

with output SNRs

ρzf,n =
snr

[(H∗H)−1]nn
, 1 ≤ n ≤ N, (12)

and

ρmmse,n =
snr

[(H∗H + 1
snrI)

−1]nn
− 1, 1 ≤ n ≤ N, (13)

respectively. Here [·]nn denotes the nth diagonal element. Denote hn the nth column of H and Hn

the submatrix obtained by striking hn out of H. It follows from (12) and the fact (see, e.g., [21])

[(H∗H)−1]nn =
1

h∗nhn − h∗nHn(H∗
nHn)−1H∗

nhn
(14)

that

ρzf,n =
[
h∗nhn − h∗nHn(H∗

nHn)−1H∗
nhn

]
snr = (h∗nP

⊥
Hn

hn)snr, (15)

where P⊥
Hn

= I−Hn(H∗
nHn)−1H∗

n stands for the orthogonal projection onto the null space of H∗
n. In

the case of i.i.d. Rayleigh fading, h∗nP⊥
Hn

hn ∼ χ2
2(M−N+1), with distribution [22]

fh∗nP⊥Hn
hn

(x) =
1

(M −N)!
xM−Ne−x, x ≥ 0. (16)

Similarly, we have an alternative expression for ρmmse,n [11]:

ρmmse,n =

[
h∗nhn − h∗nHn

(
H∗

nHn +
1

snr
I
)−1

H∗
nhn

]
snr, 1 ≤ n ≤ N. (17)
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B. Diversity-Multiplexing Gain Tradeoff

In [6], the authors established the framework of D-M gain tradeoff analysis in the asymptotically

high SNR regime. Denote R(snr) as the data rate of any communication scheme with input SNR snr.

The diversity gain and multiplexing gain are defined as follows [6].

Definition II.1: A scheme is said to have multiplexing gain r and diversity gain d if the data rate

R(snr) satisfies

lim
snr→∞

R(snr)
log snr

= r, (18)

and the average error probability Pe(snr) satisfies

lim
snr→∞

log Pe(snr)
log snr

= −d. (19)

Because Pe(snr) and R(snr) are related, so are d and r. We denote d(r) the tradeoff between the

diversity gain and multiplexing gain, which is always a non-increasing function.

C. Two Theorems

The following two theorems turn out to be very useful for the analysis in this paper. The first

theorem is a slight variation of [23, Lemma 2.6].

Theorem II.2: Let H be an M × N Gaussian matrix, whose entries are i.i.d. complex Gaussian

random variables with zero-mean and unit variance. With H = UΛV∗ being the singular value

decomposition (SVD) of H we have that both U and V are Haar matrices 3 and they are statistically

independent of Λ.

The second theorem is implied in [6].

Theorem II.3: For an M ×N i.i.d. Rayleigh fading channel matrix H with ordered squared singular

values of H, λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
N > 0,

lim
ε→0+

logP(λ2
n < ε)

log ε
= (M − n + 1)(N − n + 1), 1 ≤ n ≤ N. (20)

In other words,

P(λ2
n < ε) = ε(M−n+1)(N−n+1)+o(1), 1 ≤ n ≤ N. (21)

where o(1) stands for a vanishing term as ε → 0.
3A random matrix is a Haar matrix if it is uniformly distributed on the set of unitary matrices.
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III. Analysis of the Output SNR of MMSE

Since the elements of the channel matrix H are i.i.d., the output SNRs of the N substreams are of

identical (but not independent) marginal distributions. Hence, to study the distribution of the output

SNRs of the N substreams, we only need to focus on one, say the nth substream. As shown in (15)

and (16), ρzf,n is equal to snr multiplied by a Chi-square random variable. However, the distribution of

the output SNR of MMSE is more complicated. We start with analyzing the gap between the output

SNRs of ZF and MMSE.

It follows from (15) and (17) that the difference between ρmmse,n and ρzf,n, which we denote as ηsnr,n

is

ηsnr,n , ρmmse,n − ρzf,n = snrh∗nHn

[
(H∗

nHn)−1 −
(
H∗

nHn +
1

snr
I
)−1

]
H∗

nhn. (22)

Since ρmmse,n = ρzf,n + ηsnr,n, the characterization of ρmmse,n is given by the following theorem.

Theorem III.1: The random variable ηsnr,n is statistically independent of ρzf,n. Moreover, as snr →
∞, it converges to a scaled F random variable w.p. 1. In particular,

ηsnr,n
w.p.1−−−→ η∞,n, (23)

where
M −N + 2

N − 1
η∞,n ∼ F2(N−1),2(M−N+2). (24)

Proof: Let Hn = UnΛnV∗
n be the SVD, where Un ∈ CM×(N−1) and Λn ∈ C(N−1)×(N−1) . Then

ηsnr,n = snrh∗nUnΛn

[
Λ−2

n −
(
Λ2

n +
1

snr
I
)−1

]
ΛnU∗

nhn (25)

= h∗nUn

(
Λ2

n +
1

snr
I
)−1

U∗
nhn. (26)

It is readily seen from (26) that given Hn and hn, ηsnr,n is a non-decreasing function of snr. According

to the i.i.d. Rayleigh fading assumption, E[hnh∗n] = I, thus

E[P⊥
Hn

hnh∗nUn] = EHn

[
Ehn|Hn

[P⊥
Hn

hnh∗nUn]
]

= EHn [P⊥
Hn

U∗
n] = 0, (27)

where the last equality follows by the fact that P⊥
Hn

U∗
n = 0 for any instantiation of Hn. Since

both P⊥
Hn

hn and U∗
nhn are zero-mean Gaussian random vectors, (27) implies that P⊥

Hn
hn is sta-

tistically independent of U∗
nhn. Note that P⊥

Hn
hn is also independent of Λn, because P⊥

Hn
hn =

(I −UnU∗
n)hn with both hn and Un independent of Λn (cf. Theorem II.2). Hence P⊥

Hn
hn is inde-

pendent of h∗nUn(Λ2
n + 1

snrI)
−1U∗

nhn, since the latter is a function of U∗
nhn and Λn. Consequently,
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ρzf,n = ‖P⊥
Hn

hn‖2snr is also independent of ηsnr,n = h∗nUn(Λ2
n + 1

snrI)
−1U∗

nhn. Here ‖ · ‖ stands for

the Euclidean norm of a vector.

It follows from (26) and the fact that the diagonal elements of Λ2
n are all nonzero with probability

one (w.p. 1) that

lim
snr→∞ ηsnr,n = h∗nUnΛ−2

n U∗
nhn. (28)

Defining η∞,n , h∗nUnΛ−2
n U∗

nhn, we have shown that

ηsnr,n
w.p.1−−−→ η∞,n, as snr →∞. (29)

Because ηsnr,n is independent of ρzf,n, so is its limit η∞,n.

We now derive the distribution of η∞,n. Denoting g = U∗
nhn ∈ C(N−1)×1, we have that η∞,n =

g∗Λ−2
n g, where g ∼ N(0, I) since E[gg∗] = U∗

nUn = IN−1. Moreover, g and Λn are independent

since the singular matrix and singular values are independent (cf. Theorem II.2). Consider a matrix

G ∈ CM×(N−1) which has the same dimension and distribution of Hn and is independent of g. Using

the SVD of G = UGΛGV∗
G, we have g∗(G∗Gn)−1g = g∗VGΛ−2

G V∗
Gg. It is seen that 4

V∗
Gg ∼ g, ΛG ∼ Λn

and V∗
Gg is independent of ΛG. Consequently, we have

η∞,n ∼ g∗(G∗G)−1g. (30)

Construct a unitary matrix Ug such that Ugg = [0T , ‖g‖]T . Note that Ug is hence a Householder

matrix [24]. Then

η∞,n = [0T , ‖g‖](UgG∗GU∗
g)
−1[0T , ‖g‖]T . (31)

Observe that G∗G is statistically invariant under unitary transformations. Hence,

η∞,n ∼ [0T , ‖g‖](G∗G)−1[0T , ‖g‖]T = ‖g‖2
[
(G∗G)−1

]
(N−1),(N−1)

. (32)

It is clear that ‖g‖2 is a Chi-Square random variable with 2(N − 1) degrees of freedom, i.e., ‖g‖2 ∼
χ2

2(N−1). According to (14) and (16),

1
[(G∗G)−1](N−1),(N−1)

∼ χ2
2(M−N+2). (33)

4By a ∼ b, we mean that the random variables a and b have identical distribution.
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Hence, we have

η∞,n ∼ X

Y
(34)

where X ∼ χ2
2(N−1) and Y ∼ χ2

2(M−N+2), or equivalently that

M −N + 2
N − 1

η∞,n ∼ F2(N−1),2(M−N+2), (35)

with the pdf of η∞,n given as

fη∞,n(x) =
M !

(N − 2)!(M −N + 1)!
xN−2

(1 + x)M+1
, 0 ≤ x < ∞. (36)

Intuitively, η∞,n represents the power of the signal component “hiding” in the range space of Hn that

is recovered by the MMSE equalizer. In contrast, the ZF equalizer nulls out that signal component.

For any full rank channel matrix,
ηsnr,n

ρzf,n
→ 0 as snr →∞. Therefore, the interference from the other

data substreams is negligible compared to the channel noise as snr → ∞. Consequently, for any full

rank channel realization, the ratio of the output SNR gains (in dB) of the MMSE to ZF equalizers

goes to unity or

10 log10

ρmmse,n

ρzf,n
= 10 log10

(
1 +

ηsnr,n

ρzf,n

)
→ 0, as snr →∞

In spite of the diminishing relative output SNR gain, the MMSE is shown to have remarkable SNR

gain over ZF even as snr → ∞ owing to the fact that the limit of their difference is an F random

variable.

In the next section, we will provide applications of our analysis of ρmmse,n = ρzf,n + ηsnr,n. It is

noted here that Theorem III.1 was originally presented in the conference version of this paper [11].

In the independent work of [12], the authors show that ρzf,n and ηsnr,n are independent even if the

columns of H are correlated but with the rows of H being independent. However, in this case, the

exact distribution of η∞,n is unknown.

A. Interference-to-noise ratio (INR)

In recovering the signal xn in the range space of Hn, the MMSE equalizer admits some leakage

from the other interfering data substreams. It is shown in [10] that the leakage diminishes as input

power increases. A more careful study detailed in Appendix A shows that the INR at the output of

the MMSE equalizer is in fact inversely proportional to the input SNR.
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Lemma III.2: The INR of the nth substream obtained using MMSE equalizer is upper bounded by

inrn . ηsnr,n

ρzf,n
. (37)

This upper bound is asymptotically tight at high SNR.

Proof: See Appendix A.

IV. Applications of Theorem III.1

In this section, we apply Theorem III.1, i.e. the relationship ρmmse = ρzf,n + ηsnr, to analyze the

uncoded error probability, outage probability, and ε-outage capacity of the MMSE equalizer. We shall

see that the gap ηsnr brings about a remarkable difference in performance between the MMSE and

ZF with respect to the uncoded error probability and outage probability as snr → ∞. Interestingly

however, their ε-outage capacities coincide in the high SNR regime because this performance metric

depends only on the fact that the ratio of the output SNRs of the MMSE and ZF equalizers approaches

unity with increasing SNR.

A. Uncoded Error Probability Analysis

The uncoded error probability of the ZF equalizer is well known but we state it here for the sake of

completeness. Consider the input of binary phase-shift keying (BPSK). The error probability of the

nth substream obtained by ZF is (cf. (16))

Pb,zf =
∫ ∞

0
Q(
√

2snrx)
1

(M −N)!
xM−Ne−xdx, (38)

where the Q-function is Q(x) = 1√
2π

∫∞
x e−

t2

2 dt. The exact closed-form expression of Pb,zf is known

(see, e.g., [20]).

Pb,zf =
[
1
2

(
1−

√
snr

1 + snr

)]M−N+1 M−N+1∑

n=0


 M −N + n

n







1 +
√

snr
1+snr

2


 . (39)

We now consider the problem of analyzing the uncoded error probability for the MMSE equalizer.

Because the output SNRs of all the N substreams are of identical distribution, we only need to focus

on one substream.

For the error probability of MMSE, we assume that the sum of the perturbations due to the in-

terference from the other data substreams and the channel noise can be well approximated as being

Gaussian. Consequently, the approximate error probability of MMSE equalizer can be calculated
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through the Q-function (this Gaussian approximation is remarked on later):

Pb,mmse ' Eρmmse,n

[
Q

(√
2ρmmse,n

)]
. (40)

It follows from (22) and (29) that

ρmmse,n
w.p.1−−−→ ρzf,n + η∞,n, as snr →∞. (41)

Applying the Taylor expansion to Q
(√

2ρmmse,n

)
around ρzf,n + η∞,n, we obtain

Q
(√

2ρmmse,n

)
= Q

(√
2(ρzf,n + η∞,n)

)
+

Φ
(√

2ξ
)

√
2ξ

(η∞,n − ηsnr,n) , (42)

where ξ ∈ (ρmmse,n, ρzf,n + η∞,n) and Φ(x) = 1√
2π

exp
(
−x2

2

)
. Recall that [25]

(
1− 1

x2

)
Φ(x)

x
≤ Q(x) ≤ Φ(x)

x
. (43)

Therefore
Φ(
√

2ξ)√
2ξ

≈ Q(
√

2ξ) at high SNR. Also note that ξ → ρzf,n + η∞,n and η∞,n− ηsnr,n → 0 w.p.1

as snr →∞. We can see from (42) that

Q
(√

2ρmmse,n

)
= Q

(√
2(ρzf,n + η∞,n)

)
(1 + o(1)) w.p. 1. (44)

Hence, at high SNR, we have that

lim
snr→∞

E
[
Q

(√
2ρmmse,n

)]

E
[
Q

(√
2(ρzf,n + η∞,n)

)] = 1, (45)

so that the error probability of MMSE can be further approximated as

Pb,mmse ' E
[
Q

(√
2(ρzf,n + η∞,n)

)]
. (46)

Since the distributions of ρzf,n and η∞,n are given in (16) and (36), respectively, (46) can be obtained

via numerical integration rather than Monte Carlo simulations. Invoking the alternative expression of

Q(x) [26], namely that

Q(x) =
1
π

∫ π/2

0
exp

(
− x2

2 sin2 θ

)
dθ, (47)

we have

Pb,mmse ' Eη∞,n

[
1
π

∫ ∞

0

∫ π/2

0
exp

(
−2(snrx + η∞,n)

2 sin2 θ

)
dθ

1
(M −N)!

xM−Ne−xdx

]
(48)

< Eη∞,n

[
e−η∞,n

1
π

∫ ∞

0

∫ π/2

0
exp

(
− snrx

sin2 θ

)
dθ

1
(M −N)!

xM−Ne−xdx

]
(49)

= E
[
e−η∞,n

]
Pb,zf (50)
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where to obtain (49), we have used the fact that e−η∞,n ≥ e−
η∞,n

sin2 θ . Note that E [e−η∞,n ] is a constant

number strictly less than unity. The equation (50) shows the non-vanishing error probability gap

between ZF and MMSE even in the high SNR regime.

Calculating the error probabilities of a general quadrature amplitude modulation (QAM) is straight-

forward using the error probability expression in Q-function [27].

The representation of the error probability using the Q-function is based on the Gaussian approx-

imation of the perturbation due to interference-plus-noise, and hence is not exact. In [10], Poor, et.

al. show that in some scenarios the error probability calculated based on the Gaussian approximation

is indiscernible from the exact one. It is explained essentially by observing that (i) the leakage from

the interfering substreams diminishes at high SNR and (ii) the interference term is dominated by the

noise at low SNR. In either case, the perturbation can be well-approximated by Gaussian noise. But

their work focused on non-fading channel. In fading channels, however, a rigorous justification for the

Gaussian approximation is still missing. Indeed, we have observed through extensive simulations that

for rank-deficient channel realizations there is a non-negligible discrepancy between the Q-function

approximation and the actual one, especially for channels with low dimensionality (say, M = N = 2).

Despite this phenomenon, the Gaussian approximation is still quite accurate in terms of average error

probability for channels that are full rank with probability one, a fact that is verified in a numerical

example given in Section VII.

B. Outage Probability and ε-Outage Capacity

Consider employing independent codes of rate R each over the N antennas. The nth antenna

transmission is in outage if the output SNR cannot support the target rate R. With the ZF equalizer

the outage probability of the nth substream is

P zf
out,n = P (log(1 + ρzf,n) < R) = Fχ2

2(M−N+1)

(
2R − 1

snr

)
(51)
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where Fχ2
2(M−N+1)

(x) = 1 − e−x
M−N∑

k=0

xk

k!
is the cumulative density function (cdf) of χ2

2(M−N+1). The

outage probability of MMSE is

Pmmse
out,n = P (log(1 + ρzf,n + ηsnr,n) < R)

=
∫ 2R−1

0
Fχ2

2(M−N+1)

(
2R − 1− η

snr

)
fηsnr,n(η)dη

'
∫ 2R−1

0
Fχ2

2(M−N+1)

(
2R − 1− η

snr

)
fη∞,n(η)dη. (52)

We impose the upper limit 2R−1 on the integration because Fχ2
2(M−N+1)

(x) = 0 when x < 0. Inserting

(36) into (52), we calculate the outage probability of MMSE using numerical integration. Note that

Fχ2
2(M−N+1)

(x) = e−x
∞∑

k=M−N+1

xk

k!
=

x(M−N+1)

(M −N + 1)!
+ o

(
x(M−N+1)

)

around the origin. It follows from (52) that for high SNR (snr À 2R − 1),

Pmmse
out,n ≈ Fχ2

2(M−N+1)

(
2R − 1

snr

) ∫ 2R−1

0

(
1− η

2R − 1

)M−N+1

fη∞,n(η)dη

= P zf
out,n

∫ 2R−1

0

(
1− η

2R − 1

)M−N+1

fη∞,n(η)dη. (53)

Given a fixed rate R, there is a non-vanishing gap between Pmmse
out,n and P zf

out,n even as snr → ∞.

Moreover, as we can observe from (53), the gap would become smaller as R increases. This phenomenon

is validated in Section VII on numerical results.

The ε-outage capacity is the maximum supportable rate under the restriction that the outage prob-

ability is no greater than ε, and is defined as

Czf(ε) , sup {R : P(log(1 + ρzf,n) < R) ≤ ε} (54)

and

Cmmse(ε) , sup {R : P(log(1 + ρmmse,n) < R) ≤ ε}

= sup {R : P(log(1 + ρzf,n + ηsnr,n) < R) ≤ ε} , (55)

respectively. Since the cdfs of both ρzf,n and ρmmse,n are continuous. It is easy to show that the cdfs

of log(1 + ρzf,n) and log(1 + ρmmse,n) are also continuous. Therefore Czf and Cmmse are the solutions

to P(log(1 + ρzf,n) < R) = ε and P(log(1 + ρmmse,n) < R) = ε, respectively. Now we obtain that

Czf(ε) = log
(

1 + snrF−1
χ2

2(M−N+1)

(ε)
)

, (56)
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where F−1
χ2

2(M−N+1)

is the inverse function of the cdf of χ2
2(M−N+1) thus satisfying

∫ F−1

χ2
2(M−N+1)

(ε)

0

1
(M −N)!

xM−Ne−xdx = ε. (57)

For Cmmse(ε), we examine the relationship:

P (log(1 + ρmmse,n) < Czf(ε))

= P
(

ρzf,n + ηsnr,n < snrF−1
χ2

2(M−N+1)

(ε)
)

= P
(

χ2
2(M−N+1) < F−1

χ2
2(M−N+1)

(ε)− ηsnr,n

snr

)
(58)

By the continuity of the cdf,

lim
snr→∞P

(
χ2

2(M−N+1) < F−1
χ2

2(M−N+1)

(ε)− ηsnr,n

snr

)
= P

(
χ2

2(M−N+1) < F−1
χ2

2(M−N+1)

(ε)
)

= ε, w.p.1.

Hence we have that limsnr→∞ P (log(1 + ρmmse,n) < Czf(ε)) = ε w.p. 1, and consequently,

lim
snr→∞Cmmse(ε)− Czf(ε) = 0, w.p.1, (59)

i.e., the MMSE equalizer has the same ε-outage capacity as ZF at asymptotically high SNR.

The non-vanishing SNR gap between the outage probabilities of the zero-forcing and MMSE equal-

izers and the result in (59) may seem contradictory at first. The explanation for this apparent con-

tradiction is that the difference between the outage probabilities of the two equalizers vanishes as the

rate increases such that the difference between the maximum rates achievable with ZF and MMSE

such that outage probability is less than a fixed threshold shrinks to zero with increasing SNR, a

phenomenon we illustrate again in the section on numerical results.

V. Analysis of D-M Gain Tradeoff

In this section, we obtain the exact D-M gain tradeoffs of the linear ZF and MMSE receivers

when independent, equal rate (and equal power) SISO Gaussian codebooks are employed over the N

antennas. As a by-product of this analysis, we further infer that no channel dependent ordering of

substream decoding can improve the D-M tradeoff of V-BLAST.

A. The Linear ZF Equalizer

Consider the MIMO system that employs independent coding for each substream and the ZF equal-

izer at the receiver. Each substream effectively experiences a scalar channel whose gain is of χ2
2(M−N+1)
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distribution. With the overall multiplexing gain r, each substream has a multiplexing gain r
N . The

system is in outage if and only if at least one substream is in outage. Hence, the overall system outage

probability is given as

Pout,zf(snr) = P
(

log
(

1 +
snr

[(H∗H)−1]nn

)
<

r

N
log snr, for some n

)
, (60)

where P(E) denotes the probability of event E . We can bound (60) by

P
(

log
(

1 +
snr

[(H∗H)−1]11

)
<

r

N
log snr

)
≤ Pout,zf(snr) ≤

N∑

n=1

P
(

log
(

1 +
snr

[(H∗H)−1]nn

)
<

r

N
log snr

)
.

(61)

Because the output SNRs of the N substreams have identical distributions, the rightmost expression

of (61) is

N · P
(

log
(

1 +
snr

[(H∗H)−1]11

)
< r log snr

)
. (62)

Since
log N

log snr
snr→∞−−−−→ 0, according to (19), the diversity gain

dzf(r) = − lim
snr→∞

log Pout,zf(snr)
log snr

= − lim
snr→∞

logP
(
log

(
1 + snr

[(H∗H)−1]11

)
< r

N log snr
)

log snr
(63)

= − lim
snr→∞

logP
(

1
[(H∗H)−1]11

< snr
r
N
−1

)

log snr
(64)

Using the fact that
1

[(H∗H)−1]11
has pdf given in (16), one can easily derive from (64) that (see [20])

dzf(r) = (M −N + 1)
(
1− r

N

)
. (65)

B. The Linear MMSE Equalizer

Analogously to (60), the outage probability is given as

Pout,mmse(snr) = P

(
log

(
snr

[(H∗H + 1
snrI)

−1]nn

)
<

r

N
log snr, for some n

)
, (66)

Since the MMSE equalizer has a higher output SNR than the ZF equalizer (by ηsnr,n, a non-negative

random variable), we have that Pout,mmse ≤ Pout,zf . Therefore, it must be true that the D-M gain

tradeoff for MMSE is better than that for ZF, i.e.,

dmmse(r) , − lim
snr→∞

log Pout,mmse(snr)
log snr

≥ (M −N + 1)
(
1− r

N

)
. (67)

Interestingly, equality in the above inequality holds, as we shall see next.
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We first prove the following lemma on the distribution of the elements of a column of a Haar matrix

and their minimum value.

Lemma V.1: The joint pdf of {|vn|2}N−1
n=1 , where v , [v1 v2 · · · vN ]T is a column vector of a Haar

matrix V ∈ CN×N , is 5

f|v1|2,··· ,|vN−1|2(x1, . . . , xN−1) = (N − 1)!, for 0 ≤ |xn|2 ≤ 1 and 0 ≤
N−1∑

n=1

|vn|2 ≤ 1. (68)

The marginal pdf of |vn|2 for each n is

f|vn|2(x) = (N − 1)(1− x)N−2, 0 ≤ x ≤ 1, (69)

Define u , min{|vn|2, n = 1, · · · , N.}. Then u has pdf

fu(x) = (N2 −N)(1−Nx)N−2, 0 ≤ x ≤ 1
N

. (70)

Consequently, for any fixed n, |vn|2 has the same distribution as Nu, i.e., |vn|2 ∼ Nu.

Proof: As v is a column of a Haar matrix,

v ∼ ζ

‖ζ‖ ,

where ζ ∼ N(0, IN ) is a complex-valued circularly symmetric Gaussian vector. Denote Xi , |ζi|2.
Then Xi’s are i.i.d. with an exponential distribution, i.e., fXi(x) = e−x for x ≥ 0. Consider the

conditional joint distribution of Xi for 1 ≤ i ≤ N − 1 given Y , ‖ζ‖2. Using the fact that Y =
∑N

i=1 Xi ∼ χ2
2N , we obtain

fX1,...,XN−1|Y (x1, . . . , xN−1|y) =
fY |X1,...,XN−1

(y|x1, . . . , xN−1)f(x1, . . . , xN−1)
fY (y)

=
e−

∑N
i=1 xi

1
(N−1)!y

N−1e−y
= (N − 1)!y−(N−1). (71)

As |vi| = |ζi|2
‖ζ‖2 = Xi

Y , it follows from (71) that

f|v1|2,...,|vN−1|2|Y (x1, . . . , xN−1|y) = (N − 1)!. (72)

Since the joint pdf of {|vn|2}N−1
n=1 is independent of Y , we have proven (68). Note that the random

vector [|v1|2, . . . , |vN−1|2] has a uniform distribution over the simplex

S =

{
{|vn|2}N−1

n=1 : 0 ≤ |vn|2 ≤ 1,
N−1∑

n=1

|vn|2 ≤ 1

}
, (73)

5Here we present the joint pdf of {|vn|2}N−1
n=1 rather than {|vn|2}N

n=1 because the latter is a degenerated function since
∑N

i=1 |vi|2 = 1.
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which has volume Vol(S) = 1
(N−1)! .

By the property of symmetry, |vn|2’s have identical distribution. Note that |vn|2 has the same

distribution as Z1
Z1+Z2

where the two independent Chi-square random variables Z1 ∼ χ2
2 and Z2 ∼

χ2
2N−2. Hence |vn|2 is of Beta distribution with parameter (1, N − 1) (see, e.g., [28, pp. 60]):

f|vn|2(x) = (N − 1)(1− x)N−2, 0 ≤ x ≤ 1. (74)

According to the definition u , min{|vn|2, n = 1, · · · , N.}, we have

P(u > x) = P(|vn|2 > x, 1 ≤ n ≤ N). (75)

It is not difficult to verify that the set {|vn|2 > x, 1 ≤ n ≤ N} corresponds to a subset of S:
{
{|vn|2}N−1

n=1 : |vn|2 > x, , 1−
N−1∑

n=1

|vn|2 > x

}
, 0 ≤ x ≤ 1

N
, (76)

which is a smaller simplex with volume (To see this point, note that the side length of this smaller

simplex is 1−Nx.)

(1−Nx)N−1 ·Vol(S). (77)

It follows from (75) and (77) that

P(u > x) = (1−Nx)N−1. (78)

Thus the pdf of u is

fu(x) =
−dP(u > x)

dx
= N(N − 1)(1−Nx)N−2, 0 ≤ x ≤ 1

N
. (79)

Comparing (74) and (79), we see that |vn|2 has the same distribution as Nu for all n.

Besides the MIMO system considered in the beginning of this section, which employs independent

coding for each substream, we also consider a system where a single SISO Gaussian code is applied

across N substreams. With a linear MMSE equalizer, the D-M gain tradeoff of the latter system is

d̄mmse(r) , − lim
snr→∞

logP
(∑N

n=1 log(1 + ρmmse,n) < r log snr
)

log snr
, (80)

while D-M tradeoff of the former system is dmmse(r) as defined in (67).

The following theorem establishes that the equality holds in (67).

Theorem V.2:

d̄mmse(r) = dmmse(r) = (M −N + 1)
(
1− r

N

)
(81)
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Proof: It is easy to see that (cf. (66))

Pout,mmse(snr) ≥ P
(

N∑

n=1

log(1 + ρmmse,n) < r log snr

)
. (82)

Consequently,

d̄mmse(r) ≥ dmmse(r). (83)

Let us denote the sum of the mutual informations between channel input and the output over the N

substreams of an MMSE equalizer as

Immse =
N∑

n=1

log(1 + ρmmse,n) =
N∑

n=1

log

(
snr

[(H∗H + 1
snrI)

−1]nn

)
. (84)

Let H∗H = VΛ2V∗ be its SVD with λ2
1 ≥ · · · ≥ λ2

N as the ordered diagonal entries of Λ2. We can

rewrite (84) as

Immse =
N∑

n=1

log

(
snr

v∗n
(
Λ2 + 1

snrI
)−1 vn

)
, (85)

where vn is the nth column V∗. Recall from Theorem II.2 that V is a Haar matrix and is independent

of Λ. Since

v∗n

(
Λ2 +

1
snr

I
)−1

vn =
N∑

i=1

|vni|2(λ2
i + snr−1)−1 ≥ |vnN |2(λ2

N + snr−1)−1 , (86)

where vni is the ith element of v∗n, the mutual information of the nth substream can be bounded as

log

(
snr

v∗n
(
Λ2 + 1

snrI
)−1 vn

)
≤ log

(
1 + λ2

N snr

|vnN |2
)

, n = 1, · · · , N, (87)

and hence

Immse ≤
N∑

n=1

log
(

1 + λ2
N snr

|vnN |2
)

. (88)

Hence, we can upper bound the D-M gain tradeoff

d̄mmse(r) ≤ − lim
snr→∞

logP
(
N log(1 + λ2

N snr)−∑N
n=1 log |vnN |2 < r log snr

)

log snr
. (89)

Since [v1N v2N · · · vNN ]T is a column of the Haar matrix V∗, |vnN |2 has the pdf given in (69), we

can obtain after some routine calculations that

E[log |vnN |2] = −
N−1∑

n=1

1
n

.

Because |vnN |’s have the same pdf,

E

[
N∑

n=1

log |vnN |2
]

= −N
N−1∑

n=1

1
n

, E, (90)
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which is a negative constant. Next, consider the following set inequality which allows us to further

lower bound Pout,mmse(snr),
{

λN , {|vnN |2}N
n=1 : N log(1 + λ2

N snr)−
N∑

n=1

log |vnN |2 < r log snr

}

⊃ {
λN , {|vnN |2}N

n=1 : N log(1 + λ2
N snr) < r log snr + E

} ∩
{

N∑

n=1

log |vnN |2 > E

}
. (91)

Using the statistical independence between λN and {|vnN |2}N
n=1 we have

P

(
N log(1 + λ2

N snr)−
N∑

n=1

log |vnN |2 < r log snr

)

> P
(
N log(1 + λ2

N snr) < r log snr + E
)
P

(
N∑

n=1

log |vnN |2 > E

)
. (92)

Hence, (89) can be further bounded as

d̄mmse(r) ≤ − lim
snr→∞

logP
(
N log(1 + λ2

N snr) < r log snr + E
)

+ logP
(∑N

n=1 log |vnN |2 > E
)

log snr
. (93)

Since P
(∑N

n=1 log |vnN |2 > E
)

is a positive constant independent of snr, we have

d̄mmse(r) ≤ − lim
snr→∞

logP
(
N log(1 + λ2

N snr) < r log snr + E
)

log snr

= − lim
snr→∞

logP
(
N log(1 + λ2

N snr) < r log snr
)

log snr

= − lim
snr→∞

logP
(
λ2

N < snr
r
N
−1

)

log snr
. (94)

By Theorem II.3, we obtain the upper bound

d̄mmse(r) ≤ (M −N + 1)
(
1− r

N

)
, 1 ≤ r ≤ N. (95)

Combining this with (67) and the bound (83), we have that the D-M tradeoff of MMSE is

dmmse(r) = d̄mmse(r) = (M −N + 1)
(
1− r

N

)
(96)

and the theorem is proved.

At first glance, the conclusion that even considering the lower bound on outage probability in (82)

does not improve system diversity gain is rather surprising. Since the N substreams usually have

distinct output SNRs (even if they have identical marginal distributions), it seems unlikely that all the

N substreams are in outage simultaneously. Note that Immse is the mutual information rate realized
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in a parallel channel that results from fixing the receiver front-end to be the linear MMSE equalizer

with the transmitter using this knowledge to code across the N substreams. One might expect to

achieve an N -fold diversity gain with such coding compared to using independent coding across the

antennas. Theorem V.2 however implies that the output SNRs of the N substreams are actually highly

correlated. This point can be seen from (87); if λN ≤ snr−1, then the mutual informations in all the

N substreams tend to be small.

Corollary V.3: For both ZF and MMSE, the N substreams, ranking from the strongest to the

weakest, have diversity gain of their individual outage probabilities to be all equal to M −N + 1.

Proof: We first consider the MMSE case. Suppose that the strongest substream, with output

SNR ρmax, has diversity gain dmax > M −N + 1. According to (96), d̄mmse(0) = M −N + 1. Denote

the mutual information Immse(snr) ,
∑N

n=1 log(1 + ρmmse,n) ≥ log(1 + ρmax). Then

− lim
snr→∞

logP (Immse(snr) < const)
log snr

≥ − lim
snr→∞

logP (log(1 + ρmax) < const)
log snr

= dmax > M −N + 1,

where const stands for a finite constant. Note that the leftmost term of the above equation is equal to

d̄mmse(0) = M −N + 1, which leads to a contradiction. Thus dmax ≤ M −N + 1. On the other hand,

suppose the weakest substream has diversity gain dmin < M −N +1. With the same but independent

coding applied to all the substreams, the overall system outage probability would be dominated by

that of the weakest substream, which is of order snr−dmin . It implies that dmmse(0) < M−N +1, which

also leads to a contradiction. Therefore dmin ≥ M −N + 1, and we conclude that all the substreams

must have the same diversity gain M −N + 1 for the linear MMSE equalizer. The argument for the

case of ZF is straightforward given the above.

C. D-M Gain Tradeoff of V-BLAST with Channel-Dependent Ordered Detection

Based on Corollary V.3, we are ready to answer the long standing open question as to what really

is the D-M tradeoff of V-BLAST with channel-dependent ordered decoding.

In contrast to the linear equalizers which decode the N substreams simultaneously, the V-BLAST

equalizer applies successive nulling and interference cancellation to recover the substreams one by one.

At each step, the V-BLAST estimates one substream according to the criteria of ZF or MMSE and then

eliminates the estimated component from the received data. Hence at the next step, the substream

to detect is subject to one less interferer [29]. We refer to the V-BLAST based on the ZF and MMSE

criteria as the ZF-VB and MMSE-VB, respectively. The output SNRs of the substreams estimated by
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the ZF-VB or MMSE-VB are closely related to applying the QR decomposition to the channel matrix.

In particular, denoting the QR decomposition H = QR, the ZF-VB yields N substreams with output

SNRs (cf. [3], [13])

ρzf−vb,n = r2
nnsnr for 1 ≤ n ≤ N, (97)

where rnn, n = 1, . . . , N are the diagonal entries of R. 6 Similarly, the MMSE-VB yields N substreams

with [29], [30]

ρmmse−vb,n = r̆2
nnsnr − 1 for 1 ≤ n ≤ N, (98)

where r̆nn, n = 1, . . . , N are the diagonal entries of R̆ yielded by the QR decomposition


 H

snr−
1
2 I


 =

Q̆R̆. Because the N substreams employ independent SISO codes, the substream corresponding to the

lowest output SNR is the bottleneck of the overall system [31]. One remedy of this undesirable effect

is to apply channel-dependent ordering [32][2]. The channel dependent ordering can be represented

by a permutation matrix Π (this is actually a function of H but we don’t write Π(H), for simplicity)

and the output SNRs of the substreams obtained via ordered V-BLAST are therefore dependent on

the QR decompositions HΠ = QR and


 HΠ

snr−
1
2 I


 = Q̆R̆. The permutation matrix is chosen

such that min1≤n≤N{r2
nn} (or min1≤n≤N{r̆2

nn} in the MMSE-VB case) is maximized among the N !

permutations. Define r2
max , maxΠ min1≤n≤N{r2

nn} and r2
min , minΠ min1≤n≤N{r2

nn}. And r̆2
max and

r̆2
min are similarly defined with r2

nn replaced by r̆2
nn.

Then with any ordered detection the D-M tradeoffs of ZF-VB and MMSE-VB are sandwiched by

− lim
snr→∞

logP
(
log(1 + r2

minsnr) < r
N log snr

)

log snr
≤ dzf−vb(r) ≤ − lim

snr→∞
logP

(
log(1 + r2

maxsnr) < r
N log snr

)

log snr

(99)

and

− lim
snr→∞

logP
(
log(r̆2

minsnr) < r
N log snr

)

log snr
≤ dmmse−vb(r) ≤ − lim

snr→∞
logP

(
log(r̆2

maxsnr) < r
N log snr

)

log snr
,

(100)

respectively. It is not difficult to show that with detection ordering Π

r2
NN =

1
[(ΠTH∗HΠ)−1]NN

and r̆2
NN =

1
[(ΠTH∗HΠ + 1

snrI)
−1]NN

. (101)

6To make the QR decomposition unique, the diagonal entries of R are positive.
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By choosing different Π, r2
NN and r̆2

NN can take on one of N different values:

r2
NN =

1
[(H∗H)−1]nn

and r̆2
NN =

1
[(H∗H + 1

snrI)
−1]nn

, 1 ≤ n ≤ N. (102)

Comparing (97) (98) to (12) (13) and invoking (102), we see that the first detected substream using

ZF-VB (or MMSE-VB) has the output SNR taken from ρzf,n (or ρmmse,n), for 1 ≤ n ≤ N . Define

r2
NN,max , max1≤n≤N

1
[(H∗H)−1]nn

and r2
NN,min , min1≤n≤N

1
[(H∗H)−1]nn

, while r̆2
NN,max and r̆2

NN,min

are defined similarly. We show next that

r2
max ≤ r2

NN,max and r2
min = r2

NN,min. (103)

By definition,

r2
max = max

Π
min

1≤n≤N
{r2

nn} ≤ max
Π

{
r2
NN

}
= max

1≤n≤N

1
[(H∗H)−1]nn

= r2
NN,max. (104)

Hence the first inequality of (103) is proven. Again by definition, we can prove that

r2
min = min

Π
min

1≤n≤N
{r2

nn} ≤ min
Π

{
r2
NN

}
= r2

NN,min. (105)

Moreover, suppose r2
min < r2

NN,min, which means that for some permutation Π, r2
min = r2

nn for some

n 6= N . Then we can always find a new permutation Π̃ matrix such that the nth column of HΠ is

moved to the Nth column of HΠ̃, and the QR decomposition HΠ̃ = QR̃ yields r̃2
NN ≤ r2

nn = r2
min <

r2
NN,min, where r̃2

NN ≤ r2
nn because moving the column to the right always reduces its corresponding

rii as it has more interference to suppress. Now we have reached a contradiction and hence proven

that r2
min = r2

NN,min. Using the same argument, we can prove that

r̆2
max ≤ r̆2

NN,max and r̆2
min = r̆2

NN,min. (106)

Let us first focus on the MMSE-VB case. Recall that the V-BLAST applies the same but independent

coding. Therefore, with spatial multiplexing gain r, the outage probability of V-BLAST is [31]

P
(

log( min
1≤n≤N

r̆2
nnsnr) <

r

N
log snr

)
.

According to (100) and (106), we obtain that

− lim
snr→∞

logP
(
log(r̆2

NN,minsnr) < r
N log snr

)

log snr
≤ dmmse−vb(r) ≤ − lim

snr→∞

logP
(
log(r̆2

NN,maxsnr) < r
N log snr

)

log snr
.

(107)
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or equivalently,

− lim
snr→∞

logP
(
r̆2
NN,min ≤ snr

r
N
−1

)

log snr
≤ dmmse−vb(r) ≤ − lim

snr→∞

logP
(
r̆2
NN,max ≤ snr

r
N
−1

)

log snr
. (108)

By Corollary V.3, we have

− lim
snr→∞

logP
(
r̆2
NN,min ≤ snr

r
N
−1

)

log snr
= − lim

snr→∞

logP
(
r̆2
NN,max ≤ snr

r
N
−1

)

log snr
= (M −N + 1)

(
1− r

N

)
.

(109)

Hence, for any channel-dependent detection ordering Π

dmmse−vb(r) = (M −N + 1)
(
1− r

N

)
, 0 ≤ r ≤ N. (110)

Clearly, in similar vein, we can obtain

dzf−vb(r) = (M −N + 1)
(
1− r

N

)
, 0 ≤ r ≤ N. (111)

Now we have established the following theorem.

Theorem V.4: For both ZF-VB and MMSE-VB with any channel-dependent detection ordering, the

D-M gain tradeoff of the overall system is

dvb(r) , dmmse−vb(r) = dzf−vb(r) = (M −N + 1)
(
1− r

N

)
, 0 ≤ r ≤ N. (112)

Theorem V.4 stands for the final answer to the long-standing open problem on whether optimal

ordering in V-BLAST improves system diversity gain. Our answer is ”no”.

The result that the maximal diversity gain of the ZF-VB is M −N +1 even with detection ordering

was first established in the conference version of this paper [11]. This result was also reached by Zhang

et. al. in [33], where they further “predict that the whole diversity multiplexing tradeoff curve will

not be improved by optimal ordering”. However, their result can not be extended to the MMSE-VB

case.

We conclude this section with the following corollary.

Corollary V.5: In the asymptotically high SNR regime, the overall outage probability of V-BLAST

is dominated by that of the first detected layer for any detection ordering, .

Proof: Suppose there exists an ordering technique T which yields the n-th (n ≥ 2) detected layer

with diversity gain D ≤ M − N + 1, i.e., its outage probability Pout(snr) ∝ snr−D in the high SNR

regime. With a random detection ordering, there is 1
N ! chance that the random ordering coincides

with T . Hence the outage probability of the n-th layer is no less than 1
N !Pout(snr) and therefore its
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diversity gain is no greater than D ≤ M −N + 1. However it is well known that the V-BLAST with

random detection ordering yields the n-th detected layer with diversity gain M − N + n [14], which

is strictly greater than D, which leads to a contradiction. Hence for any ordering technique, the n-th

(n ≥ 2) detected layer has diversity gain strictly greater than M − N + 1. Since the first detected

layer has diversity gain M −N + 1 by Theorem V.4, the corollary has been proven

VI. A Closer Look: Outage Probability and Coding Gain

In this section, we consider the case where independent coding is applied to the N substreams. We

analyze the outage probability of the substreams. Despite the pessimistic conclusion of Section V with

respect to the diversity gain, we show that there is a remarkable SNR gain due to applying the optimal

detection ordering in the V-BLAST architecture which we quantify next.

To facilitate the analysis, we rewrite the output SNRs of ZF

ρzf,n =
snr

[(H∗H)−1]nn
, (113)

and MMSE

ρmmse,n =
snr

[(H∗H + snrI)−1]nn
− 1. (114)

According to (86) we have the upper bound

ρmmse,n ≤ snr

|vnN |2(λ2
N + snr−1)−1

− 1. (115)

Similarly, we obtain

ρzf,n ≤ λ2
N snr

|vnN |2 . (116)

Given the target rate R of the nth substream, its outage probability is

P zf
out,n(R, snr) = P (log(1 + ρzf,n) < R)

= P

(
snr∑N

i=1 |vni|2λ−2
i

< 2R − 1

)
(117)

≥ P

(
snr

|vnN |2λ−2
N

< 2R − 1

)
, P zf

out,n(R, snr). (118)

if ZF is used, and for MMSE

Pmmse
out,n (R, snr) = P (log(1 + ρmmse,n) < R)

= P

(
snr∑N

i=1 |vni|2(λ2
i + snr−1)−1

< 2R

)
(119)

≥ P
(

snr

|vnN |2(λ2
N + snr−1)−1

< 2R

)
, Pmmse

out,n (R, snr), (120)
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With regard to the lower bounds (118) and (120) , we have the following lemma.

Lemma VI.1:

lim
snr→∞

P zf
out,n(R, snr)

P zf
out,n(R, snr)

= 1, (121)

and

lim
snr→∞

Pmmse
out,n (R, snr)

Pmmse
out,n (R, snr)

= 1. (122)

That is, the lower bounds in (118) and (120) are asymptotically tight at high SNR.

Proof: The proof is rather technical. We relegate it to Appendix B.

We are now ready to establish the following theorem which quantifies the SNR gain that accrues by

applying the optimal decoding ordering to the V-BLAST architecture.

Theorem VI.2: Given the input SNR snr and the target rate R for each substream. Denote P zf
out,min(R, snr)

and Pmmse
out,min(R, snr) the outage probabilities of the substreams with the highest output SNR obtained

using ZF and MMSE, respectively. Then in the high SNR regime,

P zf
out,min

(
R,

snr

N

)
' P zf

out,n(R, snr), ∀n, (123)

and

Pmmse
out,min

(
R,

snr

N

)
< Pmmse

out,n (R, snr), ∀n. (124)

where the approximation in (123) is asymptotically accurate as snr → ∞ (in the sense that the limit

of the ratio of the two probabilities tends to unity with increasing SNR). Comparing to the fixed

decoding order, applying the optimal decoding order yields 10 log10 N dB SNR gain for ZF-VB, and

more than 10 log10 N dB SNR gain for MMSE-VB.

Proof: Due to (121) and (122), we can closely approximate the outage probability of the nth

substream by

P zf
out,n(R, snr) ' P

(
λ2

N

|vnN |2 <
2R − 1

snr

)
, P zf

out,n(R, snr), (125)

and

Pmmse
out,n (R, snr) ' P

(
λ2

N + snr−1

|vnN |2 <
2R

snr

)
, Pmmse

out,n (R, snr), (126)

at high SNR. Define u , min{|vnN |2, 1 ≤ n ≤ N}. Then

P zf
out,min(R, snr) ' P

(
λ2

N

u
<

2R − 1
snr

)
, P zf

out,min(R, snr), (127)

and

Pmmse
out,min(R, snr) ' P

(
λ2

N + snr−1

u
<

2R

snr

)
, Pmmse

out,min(R, snr). (128)
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Recall from Lemma V.1 that |vnN |2 ∼ Nu, ∀n, which implies that

P
(

λ2
N

u
<

2R − 1
snr/N

)
= P

(
λ2

N

|vnN |2 <
2R − 1

snr

)
. (129)

It follows from (129), (127), and (125) that

P zf
out,min

(
R,

snr

N

)
= P zf

out,n(R, snr), (130)

and hence

P zf
out,min

(
R,

snr

N

)
' P zf

out,n(R, snr). (131)

Because the approximations in (127) and (125) are asymptotically accurate as snr → ∞, so is the

approximation in (131). Therefore with respect to ZF, we can conclude that the strongest substream

has 10 log10 N dB SNR gain over an average one. Because V-BLAST applies independent coding to

each layer, V-BLAST is in outage if and only if at least one layer is in outage. It is known from

Corollary V.5 that in the high SNR regime, the outage events of V-BLAST are dominated by those of

the first detected layer. Consequently, the ZF-VB with the optimal detection ordering has 10 log10 N

dB SNR gain over ZF-VB with fixed detection ordering.

As for MMSE, according to (128),

Pmmse
out,min

(
R,

snr

N

)
= P

(
1 + λ2

N

snr

N
< 2R · u

)
(132)

= P
(
N + λ2

N snr < 2R|vNn|2
)

(133)

< P
(
1 + λ2

N snr < 2R|vNn|2
)

= Pmmse
out,n (R, snr). (134)

As the approximations in (126) and (128) are asymptotically accurate at high SNR, we can see that

Pmmse
out,min

(
R,

snr

N

)
< Pmmse

out,n (R, snr), (135)

which implies that the SNR gain of strongest substream over an average substream is more than

10 log10 N dB. Moreover, it can be seen that the gap between (133) and (134) gets larger as N

increases.

Finally, we remark that the key fact used to determine the coding gain advantage of ordered

detection is that |vnN |2 ∼ Nu, where vnN is the (n,N)th entry of the unitary matrix V∗, and

u = min{|vnN |2, n = 1, · · · , N}. According to Lemma V.1, |vnN |2 ∼ Nu as long as V is a Haar

matrix. If the columns of H are independent, then the distribution of H is invariant under the right

multiplication of a unitary matrix. Hence V is a Haar matrix. We see that Theorem VI.2 still holds

even the rows of H are correlated but the columns of H are statistically independent.
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VII. Numerical Examples

In this section, we present several numerical examples to validate the preceding theoretical analysis.

Figure 1 presents the quantile-quantile (qq) figures for the distribution of M−N+2
N−1 ηsnr against

M−N+2
N−1 η∞ which is of F-distribution (see 35). We see that the F -distribution approximation works

very well for all cases in the high SNR regime. We also see that the approximation is less accurate

when N = M . The explanation is as follows. It is known that for M = N , the channel matrix tends

to be more ill-conditioned thus the smallest diagonal entry of Λn (see (26)) is close to zero. Therefore

the convergence of (26) to the limit (28) is slower. For the case of N = M/2, the F -distribution

approximation is very accurate even for a moderate SNR of 10 dB.
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Fig. 1. Quantile-quantile plots for M−N+2
N−1 ηsnr. The range of the quantiles is 1% - 99%.

In the second example, we consider an i.i.d. Rayleigh channel with M = 5 and N = 4. We calculate

the INRs in the output of MMSE based on 104 Monte Carlo trials. Figure 2 shows the INRs at different

input SNRs, in which each curve represents the 104 INRs sorted in the non-decreasing order. This

simulation result agrees with Lemma III.2; the INR is inversely proportional to the input SNR.

Figure 3 compares the uncoded error probabilities of ZF and MMSE equalizers in a 4×4 channel with



30

0 2000 4000 6000 8000 10000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

IN
R

M = 5, N = 4

20 dB

25 dB

30 dB

35 dB

40 dB

Fig. 2. INRs in the output of MMSE with input SNR equal to 20, 25, 30, 35, and 40 dB. The results are based

on 104 Monte Carlo trials of the channel matrix. M = 5, N = 4.

BPSK input. We see that the error probabilities of MMSE obtained via averaging over 105 Monte

Carlo simulations match extremely well with the high SNR approximation of (46) for a moderate

SNR (snr ≥ 10 dB). Moreover, as predicted in (50), there is a non-vanishing gap between the error

probability curves of MMSE and ZF.

Figure 4 compares the outage probabilities of ZF and MMSE equalizers in an i.i.d. Rayleigh channel

with M = 6 and N = 5. We consider the three cases where the target rates are one, two, and

four bps/Hz per substream. Similar to Figure 3, the outage probabilities of MMSE obtained via

averaging over 107 Monte Carlo simulations (represented by +”) match exactly at high SNR with

the approximation in (52) which is obtained via numerical integration (represented in solid lines).

Although for fixed R MMSE has a non-vanishing SNR gain over ZF, the gap becomes smaller as

R increases. Figure 4 also illustrates that the ε-outage capacity is the same for MMSE and ZF at

asymptotically high SNR.

In the fifth example, we consider a channel with M = N = 3. Suppose N independent capacity-

achieving codes are applied to each substream, and the target rate is R = 3 bps/Hz for each substream.

The four solid lines in Figure 5, from top to bottom, represent P zf
out,n, Pmmse

out,n , P zf
out,min, and Pmmse

out,min,

respectively. The four dashed lines underneath the solid lines are the corresponding lower bounds,

i.e., P zf
out,n, Pmmse

out,n , P zf
out,min, and Pmmse

out,min. We see from Figure 5 that (i) all the lower bounds are
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Fig. 3. Error probabilities of ZF given in (39) and MMSE (Monte Carlo trials and high SNR approximation

given in (46)). M = N = 4.
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Fig. 4. Outage probabilities of ZF given in (51) (represented by dashed lines) and MMSE via Monte Carlo

trials (+) and high SNR approximation given in (52) (solid line). M = 6, N = 5.

asymptotically tight as SNR increases, (ii) the gap between P zf
out,min and P zf

out,n is 10 log10 N = 4.77

dB, (iii) the coding gain of Pmmse
out,min over Pmmse

out,n is significantly larger than 4.77 dB. This numerical
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example agrees with Theorem VI.2.
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Fig. 5. Outage probabilities P zf
out,1, Pmmse

out,1 , P zf
out,min, and Pmmse

out,min. The solid lines are the true values and the

dash lines are lower bounds. M = N = 3. The result is obtained via averaging over 106 Monte Carlo trials of

the channel matrix.

Figure 6 adopts the same simulation layout as that of Figure 5 except that the channel dimensionality

is changed to M = N = 5. As we can see from Figure 6, the gap between P zf
out,min and P zf

out,1 is

10 log10 N = 6.99 dB, and the SNR gain of Pmmse
out,min over Pmmse

out,1 is even more significant compared to

Figure 5. This result agrees with our analysis of (133) and (134).

In the final example, we consider an i.i.d. Rayleigh channel with M = N = 4. We compare the out-

age probabilities of the strongest substreams (P zf
out,min, Pmmse

out,min), their lower bounds (P zf
out,min, Pmmse

out,min),

along with the outage probabilities of ZF-VB and MMSE-VB with optimal detection ordering. It is

seen from Figure 7 that the lower bounds to P zf
out,min and Pmmse

out,min are also tight lower bounds to the

outage probability of ZF-VB and MMSE-VB with optimal detection ordering, respectively. Hence

theorem VI.2 can be used to predict the SNR gain of ordered detection in V-BLAST architecture.

This example also validates Corollary V.4; the detection ordering cannot improve the diversity gain,

which is M −N + 1 = 1 in this example, although MMSE-VB manifests higher diversity gain in the

low to moderate SNR regime (snr ≤ 15 dB).
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Fig. 6. Outage probabilities P zf
out,1, Pmmse

out,1 , P zf
out,min, and Pmmse

out,min. The solid lines are the true values and the

dash lines are lower bounds. M = N = 5.
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Fig. 7. Outage probabilities P zf
out,min, and Pmmse

out,min, ZF-VB and MMSE-VB with optimal ordering. The dash

lines are the lower bounds P zf
out,min and Pmmse

out,min. M = N = 4. The result is obtained via averaging over 107

Monte Carlo trials.

VIII. Conclusions

In this paper, we have analyzed the performances of the zero forcing (ZF) and minimal mean squared

error (MMSE) equalizers applied to an M × N wireless multi-input multi-output (MIMO) systems,
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in terms of output SNR, uncoded error and outage probabilities, diversity-multiplexing (D-M) gain

tradeoff, and SNR gain. We show that there is a gap between the output SNRs of ZF and MMSE

equalizers, which converges with probability one to a random variable of scaled F-distribution as

input SNR goes to infinity. Based on this result, we can accurately approximate the uncoded error

probability of MMSE equalizer via numerical integration rather than time-consuming Monte-Carlo

simulations. For coded systems, we show that although given fixed target rate MMSE has a non-

vanishing SNR gain over ZF, the ε-outage capacities of MMSE and ZF coincide in the asymptotically

high SNR regime. We also prove that even with perfect coding across the N substreams, the D-M gain

tradeoff of the MIMO system using either ZF or MMSE equalizer is d(r) = (M −N +1)
(
1− r

N

)
. As

an important corollary, we prove that the V-BLAST equalizer (vertical Bell Labs layered Space-Time)

has a maximal diversity gain of M − N + 1 even with optimal order detection. Moreover, we show

that for the ZF equalizer, the strongest substream has 10 log10 N dB SNR gain over an average one.

For MMSE, this SNR gain is much larger than even that. This analysis also quantifies the SNR gain

of applying ordered detection in V-BLAST architecture.

Appendix A

Proof of Lemma III.2

According to the matrix inverse lemma,

(
H∗H +

1
snr

I
)−1

= snr

[
I−H∗

(
1

snr
I + HH∗

)−1

H

]
.

Therefore we can rewrite the MMSE filter matrix given in (11) by

Wmmse = snr

[
I−H∗

(
1

snr
I + HH∗

)−1

H

]
H∗

= H∗
(
HH∗ +

1
snr

I
)−1

. (136)

Denote w∗
n the nth row of Wmmse, which is the MMSE nulling vector for the nth substream. Then

wn =
(
HH∗ +

1
snr

I
)−1

hn ∝ (HnH∗
n +

1
snr

I)−1hn, (137)

where hn and Hn are defined as in (14). If we normalize wn such that w∗
nhn = 1, then

wn =
(HnH∗

n + 1
snrI)

−1hn

h∗n(HnH∗
n + 1

snrI)
−1hn

. (138)
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Without loss of generality, we assume here that σ2
x = 1 and σ2

z = 1
snr . Applying wn to the received

data vector y (cf. (1)), the power of noise is

Pns,mmse =
1

snr
‖wn‖2 =

h∗n(HnH∗
n + 1

snrI)
−2hn

snr|h∗n(HnH∗
n + 1

snrI)
−1hn|2

, (139)

and the sum power of noise and interference from the other N − 1 substreams is

Pns,mmse + Pintf,mmse = w∗
n

(
HnH∗

n +
1

snr
I
)

w =
1

h∗n(HnH∗
n + 1

snrI)
−1hn

(140)

¿From (140) and (139), we have the ratio

Pns,mmse + Pintf,mmse

Pns,mmse
=

snrh∗n(HnH∗
n + 1

snrI)
−1hn

h∗n(HnH∗
n + 1

snrI)
−2hn

. (141)

Denote Hn = UnΛnV∗
n the SVD of Hn, where Un ∈ CM×(N−1) and Λn ∈ R(N−1)×(N−1). Then the

SVD of HnH∗
n + 1

snrI is

HnH∗
n +

1
snr

I = [Un
...Ūn]


 Λ2

n + 1
snrIN−1 0

0 1
snrIM−N+1


 [Un

...Ūn]∗. (142)

Now we can rewrite

h∗n

(
HnH∗

n +
1

snr
I
)−1

hn = h∗nUn

(
Λ2

n +
1

snr
I
)−1

U∗
nhn + snrh∗nŪnŪ∗

nhn, (143)

and

h∗n

(
HnH∗

n +
1

snr
I
)−2

hn = h∗nUn

(
Λ2

n +
1

snr
I
)−2

U∗
nhn + snr2h∗nŪnŪ∗

nhn. (144)

Applying (143) and (144) the fact that ŪnŪ∗
n = P⊥

Hn
, we obtain from (141) that

Pns,mmse + Pintf,mmse

Pns,mmse
=

h∗nP⊥
Hn

hn + snr−1h∗nUn

(
Λ2

n + 1
snrI

)−1 U∗
nhn

h∗nP⊥
Hn

hn + snr−2h∗nUn

(
Λ2

n + 1
snrI

)−2 U∗
nhn

(145)

and

Pintf,mmse

Pns,mmse
=

snr−1h∗nUn

(
Λ2

n + 1
snrI

)−1 U∗
nhn − snr−2h∗nUn

(
Λ2

n + 1
snrI

)−2 U∗
nhn

h∗nP⊥
Hn

hn + snr−2h∗nUn

(
Λ2

n + 1
snrI

)−2 U∗
nhn

(146)

.
h∗nUn(Λ2

n + 1
snrI)

−1U∗
nhn

snr · h∗nP⊥
Hn

hn
(147)

It is easy to see that the upper bound of (147) is asymptotically tight as snr →∞. We note that the

numerator and the denominator in (147) are exactly ηsnr,n (see (26)) and ρzf,n (see (15)), respectively.

The Lemma is proven.
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Appendix B

Proof of Lemma VI.1

We first prove (121). According to (117), we can rewrite

P zf
out,n(R, snr) = P


 λ2

N

|vnN |2 ·
1

1 + λ2
N

|vnN |2
∑N−1

i=1
|vni|2

λ2
i

<
2R − 1

snr


 . (148)

Because λ2
n’s are in non-increasing order, we have

N−1∑

i=1

|vni|2
λ2

n

≤
N−1∑

i=1

|vni|2
λ2

N−1

≤ 1
λ2

N−1

. (149)

Combining (148) and (149) yields

P zf
out,n(R, snr) ≤ P


 λ2

N

|vnN |2 ·
1

1 + λ2
N

|vnN |2
1

λ2
N−1

<
2R − 1

snr


 (150)

= P zf
out,n(R, snr) + P


 λ2

N

|vnN |2 >
2R − 1

snr
, λ2

N−1 <

λ2
N

|vnN |2
λ2

N

|v2
nN |

snr
2R−1

− 1


 . (151)

We now focus on the second term of the right hand side of (151)

P


 λ2

N

|vnN |2 >
2R − 1

snr
, λ2

N−1 <

λ2
N

|vnN |2
λ2

N

|v2
nN |

snr
2R−1

− 1


 (152)

= P


2R − 1

snr
<

λ2
N

|vnN |2 <

(
1 +

1
log snr

)
2R − 1

snr
, λ2

N−1 <

λ2
N

|vnN |2
λ2

N

|v2
nN |

snr
2R−1

− 1




+P


 λ2

N

|vnN |2 >

(
1 +

1
log snr

)
2R − 1

snr
, λ2

N−1 <

λ2
N

|vnN |2
λ2

N

|v2
nN |

snr
2R−1

− 1


 (153)

≤ P
(

2R − 1
snr

<
λ2

N

|vnN |2 <

(
1 +

1
log snr

)
2R − 1

snr

)
+ P

(
λ2

N−1 < (1 + log snr)
2R − 1

snr

)
(154)

To obtain (154) from (153), we have used the following two facts. First,

P


2R − 1

snr
<

λ2
N

|vnN |2 <

(
1 +

1
log snr

)
2R − 1

snr
, λ2

N−1 <

λ2
N

|vnN |2
λ2

N

|v2
nN |

snr
2R−1

− 1




≤ P
(

2R − 1
snr

<
λ2

N

|vnN |2 <

(
1 +

1
log snr

)
2R − 1

snr

)
. (155)

Second, because
λ2

N
|vnN |2

λ2
N

|v2
nN |

snr
2R−1

− 1
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is a decreasing function of λ2
N

|vnN |2 , for

λ2
N

|vnN |2 >

(
1 +

1
log snr

)
2R − 1

snr
,

we have
λ2

N
|vnN |2

λ2
N

|v2
nN |

snr
2R−1

− 1
<

(
1 + 1

log snr

)
2R−1
snr(

1 + 1
log snr

)
2R−1
snr

snr
2R−1

− 1
= (1 + log snr)

2R − 1
snr

.

Hence,

P


 λ2

N

|vnN |2 >

(
1 +

1
log snr

)
2R − 1

snr
, λ2

N−1 <

λ2
N

|vnN |2
λ2

N

|v2
nN |

snr
2R−1

− 1




≤ P
(

λ2
N

|vnN |2 >

(
1 +

1
log snr

)
2R − 1

snr
, λ2

N−1 < (1 + log snr)
2R − 1

snr

)

≤ P
(

λ2
N−1 < (1 + log snr)

2R − 1
snr

)
. (156)

Therefore using the inequalities (155) and (156), we obtain (154) from (153).

Combining (151) and (154), we have

P zf
out,n(R, snr) ≤ P

(
λ2

N

|vnN |2 <

(
1 +

1
log snr

)
2R − 1

snr

)
+ P

(
λ2

N−1 < (1 + log snr)
2R − 1

snr

)
(157)

According to Theorem II.3, as snr →∞, the second term of the above equation

P
(

λ2
N−1 < (1 + log snr)

2R − 1
snr

)
=

(
(2R − 1)(1 + log snr)

snr

)2(M−N+2)+o(1)

, (158)

while the first term

P
(

λ2
N

|vnN |2 <

(
1 +

1
log snr

)
2R − 1

snr

)
> P

(
λ2

N < c

(
1 +

1
log snr

)
2R − 1

snr

)
P(|vnN |2 > c)

= K ·
(

2R − 1
snr

(
1 +

1
log snr

))M−N+1+o(1)

, (159)

where c is some finite positive constant, say c = 1
2N , and K = P(|vnN |2 > c) · cM−N+1 is also a finite

positive constant.

It follows from (158) and (159) that given fixed R,

lim
snr→∞

P
(
λ2

N−1 < (1 + log snr) 2R−1
snr

)

P
(

λ2
N

|vnN |2 < 2R−1
snr

) = 0.
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Hence

lim
snr→∞

P zf
out,n(R, snr)

P zf
out,n(R, snr)

≤ lim
snr→∞

P
(

λ2
N

|vnN |2 <
(
1 + 1

log snr

)
2R−1
snr

)
+ P

(
λ2

N−1 < (1 + log snr) 2R−1
snr

)

P
(

λ2
N

|vnN |2 < 2R−1
snr

)

= lim
snr→∞

P
(

λ2
N

|vnN |2 <
(
1 + 1

log snr

)
2R−1
snr

)

P
(

λ2
N

|vnN |2 < 2R−1
snr

)

= lim
snr→∞

(
1 +

1
log snr

)M−N+1

= 1. (160)

On the other hand, according to (118)

lim
snr→∞

P zf
out,n(R, snr)

P zf
out,n(R, snr)

≥ 1. (161)

Combining (160) and (161), we have proven (121).

The techniques used above in the proof for (121) can be equally applied to prove (122). We omit it

for simplicity.
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