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Abstract

The large gain promised by the multi-input multi-output (MIMO) technology comes with a cost. In particular

multiple analog radio frequency (RF) chains, which are expensive and power consuming, are required at both the

transmitter and receiver sides. On the other hand, the antennas connecting to the RF chains are less expensive. Hence

one engineering compromise is to implement more antennas than RF chains and to use only a subset of them based

on some antenna selection (AS) algorithm. An interesting question therefore arises: given a RF chain limited MIMO

system, what is the fundamental performance gain by adding more antennas. In this two-part paper, we answer this

question by using the diversity-multiplexing (D-M) gain tradeoff metric. Consider a Rayleigh fading channel with

Mt antennas and Lt (Lt ≤ Mt) RF chains at the transmitter while Mr antennas and Lr (Lr ≤ Mr) RF chains at

the receiver. We obtain the fundamental D-M tradeoff as a function of Mt, Mr, and min(Lr, Lt). Referring to the

special case where Lt = Mt and Lr = Mr as the RF unlimited system (or full system) and RF limited system

(or pruned system) otherwise, we prove that the pruned system with optimal channel-dependent AS has the same

D-M tradeoff as the full system if the multiplexing gain is less than some integer threshold P , while it suffers from

some diversity gain loss for multiplexing gains larger than P . In particular, if min(Lr, Lt) = K , min(Mr,Mt),

then P = K, i.e. the D-M tradeoffs of the pruned system and the full system are the same. Moreover, this result

can be extended to more general fading channels such as Nakagami channel. A fast and D-M tradeoff-optimal AS

algorithm is proposed as a byproduct of our analysis.
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I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless communication systems have well-known advantages over their

single-input single-output (SISO) counterpart, i.e., much higher spectral efficiency and greatly improved reliability

[1][2][3][4]. By quantifying spectral efficiency as multiplexing gain and reliability as diversity gain, it is shown

in [5] that a MIMO system can achieve both diversity gain and spatial multiplexing gain simultaneously but there

is a fundamental tradeoff between them. Such a tradeoff is referred to as the diversity-multiplexing (D-M) gain

tradeoff. The D-M tradeoff metric has since then been a popular performance measure for the existing MIMO

communication schemes [5] and has motivated some interesting new designs [6][7][8].

The dramatic performance gain of the MIMO system comes with increased hardware complexity, i.e. more

expensive and power consuming analog radio frequency (RF) chains at both sides of the channel [9]. On the

other hand, the antennas connecting to the RF chains are less expensive. Hence one engineering compromise is to

implement more antennas than the RF chains and to use only a subset of them based on some antenna selection (AS)

algorithm [9] [10]. An interesting question therefore arises: given a RF chain limited MIMO system, what is the

fundamental performance gain by adding more antennas. In this two-part paper, we answer this question using the

D-M gain tradeoff metric. Assuming the Lt transmitting antennas and Lr receiving antennas are chosen according

to the maximization of the instantaneous channel mutual information, we derive the D-M tradeoff corresponding to

the optimal AS approach. To facilitate our discussion, we refer to a channel with Mt antennas and Lt (Lt ≤ Mt) RF

chains at the transmitter while Mr antennas and Lr (Lr ≤ Mr) RF chains at the receiver as an (Mt×Mr, Lt×Lr)

channel. Note that the conventional channel where the number of RF chains equal to the number of antennas can

be denoted as (Mt ×Mr, Mt ×Mr).

One of the major results of this paper is illustrated in Figurer 1. We highlight the major points as follows.

P1 The D-M tradeoff curve of the (Mt×Mr, Lt×Lr) channel (−◦−) is strictly higher than (Lt×Lr, Lt×Lr)

(−4−) except for the end point (N, 0), where N , Lt ∧ Lr. 1

P2 The D-M tradeoff curves of the (Mt × Mr, Lt × Lr) and (Mt × Mr,Mt × Mr) channels overlap for the

multiplexing gain r ∈ (0, P ), where P is an integer between 0 and N .

P3 The D-M tradeoff curve of (Mt×Mr, Lt×Lr) is linear for r ∈ (P, N). And it is tangent to the D-M tradeoff

curve of (Mt ×Mr,Mt ×Mr).

P4 The D-M tradeoff curve of (Mt ×Mr, Lt ×Lr) is a function of Mt, Mr, and N , but does not depend on the

individual values of Lr and Lt.

P5 If N = K , Mt∧Mr, then the D-M tradeoffs of (Mt×Mr, Lt×Lr) and (Mt×Mr, Mt×Mr) fully overlap.

P1-P3 agree with the intuition that the D-M gain tradeoff of a (Mt×Mr, Lt×Lr) channel should lie somewhere

1Throughout this paper, we denote a ∧ b as min{a, b} and a ∨ b as max{a, b}
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Fig. 1. The optimal D-M tradeoff the standard (Mt × Mr, Mt × Mr) channel, (Lt × Lr, Lt × Lr) channel, and RF chain limited

(Mt ×Mr, Lt × Lr) channel. Here N = Lt ∧ Lr and K = Mt ∧Mr .

between those of (Mt×Mr,Mt×Mr) and (Lt×Lr, Lt×Lr). However, P1-P3 clearly represent a rather optimistic

result. It can be seen that introducing extra antennas can greatly boost the D-M tradeoff although the maximal

spatial multiplexing gain is limited by the number of RF chains. Figure 2 shows the simple case of a system with

two RF chains at both transmitter and receiver side. An immediate corollary of P2 is the known result that pruning a

Mt×Mr channel to a smaller Lt×Lr one can still maintain the maximal diversity gain MtMr (corresponding to the

spatial multiplexing gain r = 0) [12][13]. But the D-M tradeoff analysis is clearly a more complete characterization.

It follows from P4 that one can always design the system with Lt = Lr for reduced hardware complexity but without

incurring D-M tradeoff loss.

It is not difficult to see that the major points summarized above also constitutes an answer to the following

question: what is the optimal D-M tradeoff of an Lr × Lt channel pruned from an Mr × Mt original channel.

Although considerable research work has been done on quantifying the influence of AS upon system performance,

including channel capacity, outage probability, and diversity gain (see [9] [10] [11] [14] and the references therein),

the D-M tradeoff analysis of the pruned systems has remained elusive, which is mainly due to the fact that the

channel-dependent antenna selection complicates the distribution of the pruned channel. This gap is now closed.

The rest of the paper is organized as follows. In Section II we introduce the MIMO fading channel and the

concept of D-M gain tradeoff. A fast AS algorithm inspired by Greedy QR decomposition is introduced in Section

III. Interestingly, this algorithm turns out to be optimal in terms of the D-M gain tradeoff. In Section IV, we

obtain the fundamental D-M gain tradeoff of a MIMO system with optimal AS. The D-M tradeoff result is further
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Fig. 2. The improvement of the D-M gain tradeoff by introducing more transmit and receive antennas.

extended to the more general fading channel than Rayleigh fading channel. The summary of the theoretical results

and their applications are relegated to the second part of this paper [23].

II. MIMO CHANNEL MODEL AND D-M TRADEOFF

A. Channel Model

Consider a communication system with Mt transmit and Mr receive antennas in an independent, identically

distributed (iid) Rayleigh flat fading channel. The sampled baseband signal is given by

y = Hx + z, (1)

where H ∈ CMr×Mt is the fading channel matrix, x ∈ CMt×1 is the information symbol vector, and y ∈ CMr×1 is

the received signal. Without loss of generality, we assume that z ∼ N(0, IMr
) is the circularly symmetric complex

Gaussian noise where IMr
denotes the identity matrix with dimension Mr. Given E[x∗x] = ρ, where E[·] is the

expectation and (·)∗ is the conjugate transpose, the input SNR is ρ

B. Diversity-Multiplexing Gain Tradeoff and Approximate Universality

In [5], the authors established the framework of D-M tradeoff analysis in the asymptotically high SNR regime.

Denote R(ρ) as the data rate of any communication scheme with input SNR ρ. The diversity gain and multiplexing

gain are defined as follows.

Definition 2.1: A scheme is said to have multiplexing gain r and diversity gain d if the data rate R(ρ) satisfies

lim
ρ→∞

R(ρ)
log ρ

= r, (2)
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and the average error probability Pe(ρ) satisfies

lim
ρ→∞

log Pe(ρ)
log ρ

= −d. (3)

Following [5], we adopt the symbol .= to denote exponential equality, i.e., we write f(ρ) .= ρb if

lim
ρ→∞

log f(ρ)
log ρ

= b.

Thus (3) can be rewritten as Pe(ρ) .= ρ−d.

Define the outage probability as 2

Poutage(ρ) , inf
Qº0,tr(Q)<ρ

P (log |I + HQH∗| < R(ρ)) , (4)

where P(E) stands for the probability of the event E . It is rigorously proven in [24] that in the limit of increasing

frame length

Pe = Poutage. (5)

That is, not only is Poutage(ρ) achievable in the sense that there exist codes with average frame error probability

that is arbitrarily close to the outage probability but that it is also a fundamental limit in that a lower frame error

probability cannot be achieved for arbitrary ε > 0, there exists a code of sufficient length for which Pe(ρ) <

Poutage(ρ) + ε. Conversely, for sufficiently long codes, Pe(ρ) > Poutage(ρ) − ε. Moreover, this relationship is

independent of the channel fading statistics [24].

Hence in the limit of long frame length, we have from (3) and (5) that the optimal diversity gain as a function

of the multiplexing gain r is

dopt(r) = − lim
ρ→∞

log Poutage(ρ)
log ρ

. (6)

It is easy be shown that water filling power allocation in the spatial domain yields no D-M tradeoff improvement

over the isotropic transmission with the input covariance matrix ρ
Mt

I [5]. Therefore

dopt(r) = − lim
ρ→∞

logP
(
log

∣∣∣I + HH∗ ρ
Mt

∣∣∣ < r log ρ
)

log ρ
. (7)

For an iid Rayleigh channel given in (1), the optimal D-M gain tradeoff is shown to be a piece-wise linear curve

obtained by connecting the following K + 1 points [5]

{(r, (Mr − r)(Mt − r))}K
r=0 , (8)

where K , Mr ∧Mt. More recently, the D-M tradeoff analysis is extended to more general fading channels such

as Rician and Nakagami fadings [19]. It is shown that some channel fadings such as Nakagami-m (m ≥ 1) has

better D-M tradeoff than Rayleigh fading channels in the regime of r ∈ [0, 1).

2We write A º 0 if A is a positive semi-definite (p.s.d.) matrix, and A º B or B ¹ A if A−B º 0.
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The relationship (5) is true only for the limiting case that the frame length (code length) goes to infinity. But

in terms of the coarser scale of D-M tradeoff, the constraint of frame length can be relaxed. For instance, it is

proven in [5] that there exist tradeoff-optimal codes with length T ≥ Mt +Mr−1 in iid Rayleigh fading channels.

Furthermore, [25] shows that (6) holds independent of frame length and channel fading distribution if the codes

are approximately universal, i.e. the pairwise error probability for every pair of codewords decays exponentially

with SNR given that the channel realization is not in outage. Indeed, based on [25, Theorem 3.1] it can be shown

that the recently proposed cyclic division algebra (CDA) based Mt × Mt space-time block codes (STBC) with

non-vanishing determinant (NDV) property [26][8][7] is approximately universal [25]. Therefore, the NDV STBCs

achieve the optimal D-M gain tradeoff for any fading channels with delay T = Mt.

III. FAST ANTENNA SELECTION ALGORITHM

Suppose the MIMO system is RF chain limited, i.e. the number of RF chain is less than the number of antennas.

We consider using only Lt ≤ Mt transmit antennas and Lr ≤ Mr receive antennas for data transmission. Denote

St ⊂ {1, 2, · · · ,Mt} and Sr ⊂ {1, 2, · · · ,Mr} the sets of the indices of antennas selected at the transmitter and

receiver sides, respectively. The cardinality of the sets |St| = Lt and |Sr| = Lr. We focus on isotropic transmission

since it does not incur the loss of D-M gain tradeoff. To select the antenna subsets incurring the smallest capacity

loss, one needs to solve the following optimization problem

Sopt
t ,Sopt

r = arg maxSt,Sr
log

∣∣∣I + HSr,St
H∗
Sr,St

ρ
Lt

∣∣∣
subject to St ⊂ {1, 2, · · · ,Mt},Sr ⊂ {1, 2, · · · ,Mr}

|St| = Lt, |Sr| = Lr.

(9)

Here HSr,St
∈ CLr×Lt is the submatrix of H obtained by keeping only the rows and columns whose indices are

in Sr and St, respectively. No solution to (9) is known other than exhaustive search over the
(

Mr

Lr

)
·
(

Mt

Lt

)

combinations, which makes the optimal solution computationally difficult especially in the systems with many

antennas [27]. Several fast yet suboptimal AS algorithms have been proposed in the literature, e.g., [16] [18]. We

introduce next another new computationally efficient AS algorithm which is later shown to be D-M tradeoff-optimal.

A. Algorithm Description

The fast AS algorithm applies the same AS routine to the transmit antennas and receive antennas separately. We

remark that the AS routine is closely related to the Greedy QR decomposition which plays an important role in the

Greedy ordering Rate Tailored V-BLAST (GRT-VB) scheme [28]. We first show how to select Lt < Mt transmit

antennas. The transmit AS routine consists of Lt steps. We elaborate the first step. The subsequent steps are easily

inferred.

In the first step, we go through the following procedure.
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(i) Calculate the Euclidean norms {‖hi‖}Mt

i=1 where hi is the ith column of H.

(ii) Permute h1 and hj where j = arg max1≤i≤Mt
{‖hi‖}. This operation can be represented by H1 = HΠ1 with

Π1 being a permutation matrix. (Π1 degrades to be IMt
if j = 1.)

(iii) Apply a Householder matrix Q1 to transform the first column of H1 to a scaled e1, where e1 is the first

column of IMr
.

The procedure (i–iii) can be illustrated as follows



× × × ×
× × × ×
× × × ×
× × × ×




Q∗
1HΠ1−−−−−→




r11 × × ×
0 × × ×
0 × × ×
0 × × ×




. (10)

Note that r11 = max{‖hi‖, 1 ≤ i ≤ Mt}. In the next step, the same procedure is applied to the trailing (Mr −
1)× (Mt − 1) submatrix on the right hand side of (10), which yields a permutation matrix Π2 and a Householder

matrix Q2. After Lt recursive steps, we obtain

HΠ = QR (11)

where Π = Π1Π2 · · ·ΠLt
is a permutation matrix, Q = Q1Q2 · · ·QLt

is a unitary matrix, and R is a matrix

whose first Lt columns form an upper triangular matrix with positive diagonal elements {rii}Lt

i=1. If the procedure

is repeated for Mt ∧Mr steps, we obtain a Greedy QR decomposition which is used in GRT-VB [28]. Denoting

Π̃ and R̃ the submatrices consisting of the first Lt columns of Π and R, respectively, we have

HΠ̃ = QR̃. (12)

We select the transmit antennas whose indices correspond to the nonzero rows of Π̃, and denote the set of their

indices as S̃t. We denote the channel matrix after transmit AS as H:,S̃t
, HΠ̃ ∈ CMr×Lt . This algorithm

is computationally quite efficient as it involves only O(LtMrMt) complex multiplications, which is detailed in

Appendix.

To select the Lr < Mr receive antennas, we apply the same procedure to HT
:,S̃t

∈ CLt×Mr . In this case Lr

recursive steps are involved. We denote by S̃r the set of indexes of selected receive antennas. Hence, the pruned

channel matrix can be denoted by HS̃r,S̃t
∈ CLr×Lt . In general, S̃t 6= Sopt

t and S̃r 6= Sopt
r , i.e., the fast AS

algorithm is suboptimal. But we shall see later that this algorithm is optimal in terms of D-M gain tradeoff.

B. Bounds on Singular Values

Besides the close-to-optimal performance, a major significance of this fast AS algorithm is that it enables us to

reveal the important relationship between the singular values of H and HS̃r,S̃t
.
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Theorem 3.1: Let λ1 ≥ λ2 ≥ · · · ≥ λK be the singular values of H ∈ CMr×Mt . Let λ̆1 ≥ · · · ≥ λ̆N (N , Lt∧Lr)

be the singular values of the pruned channel matrix HS̃r,S̃t
obtained using the proposed fast AS algorithm. Then

λ2
n

n∏

i=1

1
(Mr − i + 1)(Mt − i + 1)

≤ λ̆2
n ≤ λ2

n, n = 1, · · · , N, (13)

and

N∏

n=1

λ2
n

(Mr − n + 1)(Mt − n + 1)
≤

N∏

n=1

λ̆2
n ≤

N∏

n=1

λ2
n. (14)

An important corollary of Theorem 3.1 is the following; compared to the transmission over the N strongest

eigen-subchannels of the full system, the mutual information loss of the pruned channel obtained via the fast AS

algorithm is upper bounded by a finite constant without regard to SNR, which can be seen as follows. After transmit

AS, the mutual information of input and output of the pruned channel with input SNR ρ is

I(HS̃r,S̃t
, ρ) = log

∣∣∣I + HS̃r,S̃t
H∗
S̃r,S̃t

ρ
Lt

∣∣∣
=

∑N
n=1 log

(
1 + λ̆2

nρ
Lt

)
.

(15)

In contrast, if the input power is uniformly loaded on the strongest N eigen-subchannels of the full system, the

channel mutual information is

I(ΛN , ρ) =
N∑

n=1

log
(

1 +
λ2

nρ

N

)
, (16)

where ΛN is a diagonal matrix consisting of the N largest eigenvalues of HH∗. Therefore,

I(ΛN , ρ)− I(HS̃r,S̃t
, ρ)

=
N∑

n=1

log


1 + ρλ2

n

N

1 + ρλ̆2
n

Lt




≤
N∑

n=1

log

(
Ltλ

2
n

Nλ̆2
n

)

(by (14)) ≤
N∑

n=1

log
(

Lt(Mt − n + 1)(Mr − n + 1)
N

)
, C. (17)

On the other hand, it follows from the upper bound λn ≥ λ̆n that I(ΛN , ρ) ≥ I(HS̃r,S̃t
, ρ). Hence we have obtained

the following bounds:

0 ≤ I(ΛN , ρ)− log
∣∣∣I + HS̃r,S̃t

H∗
S̃r,S̃t

ρ

N

∣∣∣ ≤ C, (18)

where C is a finite constant. We deduce from these bounds that the D-M tradeoff of the pruned channel is the

same as that of the transmission constrained over the N strongest eigen-subchannels of the full system, since a

finite mutual information gap amounts to a finite scaling of input SNR, which does not influence the SNR exponent
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of the outage probability. This observation is indeed the cornerstone of our analysis in the next section. It is also

worth emphasizing that Theorem 3.1 is purely a linear algebra result and is irrelevant to the distribution of H.

To prove Theorem 3.1, we need to establish the following two lemmas.

Lemma 3.2: Consider a matrix H ∈ CMr×Mt with singular values λ1 ≥ λ2 ≥ · · · ≥ λK ≥ 0 (K = Mt ∧Mr).

Denote ai the Euclidean norm of the ith column of H, and bi the Euclidean norm of the ith row of H. We have
k∑

i=1

λ2
i ≥

k∑

i=1

a2
[i], k = 1, 2, · · · ,K, (19)

and
k∑

i=1

λ2
i ≥

k∑

i=1

b2
[i], k = 1, 2, · · · ,K, (20)

where a[i] and b[i] are the ith largest elements of the sequences {a}Mt

i=1 and {b}Mr

i=1, respectively.

Proof: Note that {λ2
i }K

i=1 are the largest K singular values of the Hermitian matrices HH∗ and H∗H. Also note

that H∗H has diagonal elements {a2
i }Mt

i=1 and HH∗ has diagonal elements {b2
i }Mr

i=1. The lemma follows immediately

from Schur-Horn’s Theorem [29, Theorems 4.3.26], which says that the diagonal elements of a positive semi-definite

matrix is additively majorized by the singular (eigen) values [30].

Lemma 3.3: Applying the Greedy QR decomposition (i.e. the procedure (10) is applied K times) to H yields

HΠ = QR. (21)

Denote r2
kk the squared kth diagonal elements of R. Then

r2
kk ≥

∑K
i=k λ2

i

Mt − k + 1
, k = 1, 2, · · · ,K. (22)

Proof: Recall that the Greedy QR decomposition is achieved by successively applying the procedure illustrated

in (10) K times. According to the procedure (i)-(iii) given in Section III-A,

r2
11 = max

1≤i≤Mt

{‖hi‖2} ≥ 1
Mt

‖H‖2
F =

∑K
i=1 λ2

i

Mt
(23)

where ‖ · ‖F stands for the Frobenius norm. Hence (22) is true for k = 1. At the kth step (2 ≤ k ≤ K), we have

HΠ1 · · ·Πk−1 = Q1 · · ·Qk−1R(k) with

R(k) =




r11 × · · · · · · · · · · · · ×
0

. . . . . . · · · · · · ×
0 0 rk−1,k−1 · · · · · · ×
0 · · · 0 ∗ · · · ∗
0 · · · 0 ∗ · · · ∗
0 · · · 0 ∗ · · · ∗




. (24)

Because left and right multiplying a matrix by any unitary matrix does not change its singular values, R(k) has

the same singular values as H. According to Lemma 3.2, the first k − 1 rows of R(k) have Frobenius norm less



10

than
∑k−1

i=1 λ2
i . Therefore the trailing (Mr − k + 1)× (Mt− k + 1) submatrix (denoted by ∗’s) has Frobenius norm

larger than
∑K

i=k λ2
i . It follows that

r2
kk ≥

1
Mt − k + 1

K∑

i=k

λ2
i , 2 ≤ k ≤ K. (25)

Combining (23) and (25), we have proven the lemma.

Now we are ready to prove Theorem 3.1.

Proof: (of Theorem 3.1) We first prove the upper bound in (13). Consider the pruned matrix H:,St
which

consists of the columns of H whose indices belong to St. Denote λ̃1 ≥ · · · ≥ λ̃N the N largest singular values of

H:,St
. Because H:,St

H∗
:,St

¹ HH∗, λ̃2
k ≤ λ2

k for 1 ≤ k ≤ N [31]. Because H∗
Sr,St

HSr,St
¹ H∗

:,St
H:,St

, λ̆2
k ≤ λ̃2

k

for 1 ≤ k ≤ N . Hence λ̆2
k ≤ λ2

k and the upper bound in (13) is proven.

Let H:,St
= QR̃ be the QR decomposition where Q is given in (21), and R̃ is the submatrix consisting of the

first Lt columns of R there. Clearly R̃ has the same diagonal as R. It follows from Lema 3.3 that r2
ii ≥ λ2

i

Mt−i+1 .

Hence
n∏

i=1

r2
ii ≥

n∏

i=1

λ2
ii

Mt − i + 1
. (26)

Note that the singular values of R̃ and H:,St
are the same. Recall the fact that for an upper triangular matrix, the

squared diagonal elements are multiplicatively majorized by its squared singular values [32][30], i.e.,
n∏

i=1

λ̃2
ii ≥

n∏

i=1

r2
ii ≥

n∏

i=1

λ2
i

Mt − i + 1
, for 1 ≤ i ≤ N. (27)

Combining (27) and the proven upper bound that λ̃i ≤ λi, we have

λ̃2
n ≥ λ2

n

n∏

i=1

1
Mt − i + 1

, n = 1, 2, · · · , N. (28)

Applying the same AS procedure to HT
:,St

, we obtain HSr,St
with singular values λ̆1 ≥ . . . ≥ λ̆N . Following the

same argument leading to (28), we can prove that

λ̆2
n ≥ λ̃2

n

n∏

i=1

1
Mr − i + 1

, n = 1, 2, · · · , N. (29)

Combining (28) and (29), we have proven the lower bound in (13).

The upper bound in (14) is trivial given the proven upper bound λ̆n ≤ λn for ∀n. We see from (27) that
N∏

n=1

λ̃2
n ≥

N∏

n=1

λ2
n

Mt − n + 1
. (30)

In a similar vein,
N∏

n=1

λ̆2
n ≥

N∏

n=1

λ̃2
n

Mr − n + 1
. (31)
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It follows from (30) and (31) that
N∏

n=1

λ̆2
n ≥

N∏

n=1

λ2
n

(Mr − n + 1)(Mt − n + 1)
. (32)

The theorem is proven.

IV. DIVERSITY-MULTIPLEXING TRADEOFF ANALYSIS

In this section, we derive the fundamental D-M tradeoff of an optimally pruned channel. We first establish the

result in the case of iid Rayleigh fading channel. The extension to the general fading channels is presented in

Section IV-B.

A. Rayleigh Fading Channel

For the pruned iid Rayleigh fading channel, the optimal D-M tradeoff is summarized in the following theorem.

Theorem 4.1: Consider pruning the Mr×Mt Rayleigh fading MIMO channel given in (1) to a smaller one with

Lt transmit and Lr receive antennas using the proposed fast AS algorithm. The optimal D-M gain tradeoff of the

pruned system is a piecewise linear curve obtained by connecting the following P + 2 points

{n, (Mr − n)(Mt − n)}P
n=0 , (N, 0), (33)

where N , Lr ∧ Lt, and

P = arg minp
(Mr−p)(Mt−p)

N−p

subject to 0 ≤ p ≤ N − 1, p ∈ Z.
(34)

Moreover, this D-M gain tradeoff is an upper bound for any AS strategy.
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As illustrated in Figure 3, Theorem 4.1 says that a good AS algorithm incurs no diversity gain loss if the

multiplexing gain is less than P . In particular, if N = 1 (N = Lt ∧ Lr), the tradeoff is the line connecting

(0,MtMr) and (1, 0). On the other hand, if the antenna selection is made such that N = K (K = Mt ∧ Mr),

then P = K − 1 since the slope of the curve corresponding to d ∈ (K − 1,K) is the smallest among all the K

pieces. Therefore the pruned system has the same D-M tradeoff as the full system. For instance, as in Figure 3, if

Lt = Lr = 5, the pruned system still has the D-M tradeoff as shown in − ◦ −.

On the other hand, Theorem 4.1 also quantifies the improvement of the D-M tradeoff by introducing additional

antennas at transmitter and receiver without increasing the number of RF chains and the size of codes. In Figure 3

the D-M tradeoff of a 3×3 iid Rayleigh channel is presented (−♦−). Comparing the lines −♦− and −¤−, we see

the dramatic improvement by introducing additional three receive antennas and two transmit antennas, meanwhile

the increase of hardware complexity is minimal by using AS.

We now prove Theorem 4.1.

Proof: The proof of the theorem contains two parts. The first part is the derivations leading to (41) which lean

heavily on the techniques used in [5]. Hence we only give a sketch for this part. The second part is the solution

of the optimization problem (41).

Denote

Poutage,p(r, ρ) = P
(

log
∣∣∣∣I + HS̃r,S̃t

H∗
S̃r,S̃t

ρ

Lt

∣∣∣∣ < r log ρ

)

the outage probability of the pruned channel with input SNR ρ and multiplexing gain r. Here the subscript “p”

stands for “pruned”. The diversity gain of the pruned system with multiplexing gain r is

dp(r) = − lim
ρ→∞

log Poutage,p(r, ρ)
log ρ

.

Since a finite mutual information gap amounts to a finite scaling of input SNR, which does not influence the SNR

exponent of the outage probability, it follows from (18) that

Poutage,p(r, ρ) .= P

(
N∑

n=1

log
(
1 + ρλ2

n

)
< r log ρ

)
. (35)

For an i.i.d Rayleigh fading channel, the joint distribution of the ordered squared singular values of H, λ2
1 ≥ λ2

2 ≥
· · · ≥ λ2

K > 0, is [33]

f(λ2
1, · · · , λ2

K) = CMt,Mr
·

K∏

k=1

λ
2(M−K)
k

∏

k<j

(λ2
k − λ2

j )
2e−

∑
i λ2

i ,

where CMt,Mr
is a normalizing constant and M , Mr ∨Mt. Define λ2

k = ρ−αk , 1 ≤ k ≤ K where α1 ≤ α1 ≤
· · · ≤ αK as 0 < λ1 ≤ · · · ≤ λK . The distribution of α is

f(α1, . . . , αK) = CMt,Mr
(log ρ)K

K∏

k=1

ρ−[(M−K)+1]αk

∏

k<j

(ρ−αk − ρ−αj )2e−
∑

i ρ−αi
. (36)
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At high SNR, (1 + ρλ2
n) .= ρ(1−αn)+ with (x)+ = x ∨ 0. We see from (35) that

Poutage,p(r, ρ) .= P
(∑N

n=1(1− αn)+ < r
)

.=
∫
A

∏K
k=1 ρ−[(M−K)+1]αk

∏
k<j(ρ

−αk − ρ−αj )2e−
∑

i ρ−αi dα.
(37)

where

A =

{
α : α1 ≤ α2 ≤ · · · ≤ αK ,

N∑

n=1

(1− αn)+ < r

}
. (38)

Also note that exp (−ρ−αn) decreases with ρ exponentially for any αn < 0 and exp (−ρ−αn) → 1 as ρ →∞ for

αn > 0. Therefore

Poutage,p(r, ρ) .=
∫

A+

K∏

k=1

ρ−[(M−K)+1]αk

∏

k<j

(ρ−αk − ρ−αj )2dα, (39)

where

A+ =

{
α : 0 < α1 ≤ · · · ≤ αK ,

N∑

n=1

(1− αn)+ < r

}
.

Since αi ≤ αj for j > i, we can replace the term
∏

k<j(ρ
−αk − ρ−αj )2 by ρ−2(K−k)αk at high SNR. Hence

dp(r) = − lim
ρ→∞

log
∫
A+

∏K
k=1 ρ−(M+K−2k+1)αkdα1 · · · dαK

log ρ
. (40)

According to Laplace’s principle, the integral is dominated by the term corresponding to the largest SNR exponent

as ρ →∞. Hence

dp(r) = infαk

∑K
k=1(M + K − 2k + 1)αk

subject to {αk}K
k=1 ∈ A+.

(41)

We observe that at an optimal solution to (41) it must be true that (i) αk ≤ 1 for ∀k and (ii) αk = αN for

N ≤ k ≤ K. The argument for (ii) is trivial. As for (i), if there are some elements of α which are greater than

one, without violating the constraint, we can set them to be one and reduce the objective function in (41). Also

note that M + K = Mt + Mr since M = Mt ∨Mr and K = Mt ∧Mr. Using these observations and denoting

cn =





Mt + Mr − 2n + 1 n = 1, · · · , N − 1

(Mt −N + 1)(Mr −N + 1) n = N,
(42)

we can rewrite (41) as

dp(r) = infαn

∑N
n=1 cnαn

subject to 0 < α1 ≤ α2 ≤ · · · ≤ αN < 1
∑N

n=1 αn > N − r.

(43)

To make the problem physically meaningful, we focus on the case 0 ≤ r ≤ N . It is straightforward to show that

(43) is a convex problem whose Lagrangian is

L(α, µ,γ) =
N∑

n=1

cnαn − µ

[
N∑

n=1

αn − (N − r)

]
− γ1α1 −

N∑

n=2

γn(αn − αn−1)− γN+1(1− αN ), (44)
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where the multipliers µ,γ ≥ 0. It can been seen that the Slater’s condition is satisfied for r > 0, i.e., the constraint

set has nonempty interior [34]. Hence according to the convex optimization theory [34]

dp(r) = inf
α

sup
µ,γ

L(α, µ, γ). (45)

According to the complementary slackness condition,

γ1α1 =
N∑

n=2

γn(αn − αn−1) = γN+1(1− αN ) = 0. (46)

Equating to zero the partial derivative of the Lagrangian with respect to αn’s, we obtain

cn = µ + γn − γn+1, 1 ≤ n ≤ N. (47)

Inserting (46) and (47) into (45) yields

dp(r) = infα supµ,γ

∑N
n=1(µ + γn − γn+1)αn

= infα supµ,γ µ
∑N

n=1 αn +
∑N

n=1(γn − γn+1)αn.
(48)

As we can rewrite
∑N

n=1(γn − γn+1)αn = γ1α1 +
∑N

n=2 γn(αn − αn−1)− γN+1αN , it follows from (46) that

N∑

n=1

(γn − γn+1)αn = −γN+1. (49)

Combining (48) and (49), we obtain

dp(r) = infα supµ,γ µ
∑N

n=1 αn − γN+1

= supµ,γ µ(N − r)− γN+1.
(50)

It follows from the N equations in (47) that

γn+1 = γ1 + nµ−
n∑

i=1

ci, 1 ≤ n ≤ N. (51)

In particular γN+1 = γ1 + Nµ−∑N
i=1 ci. Therefore

dp(r) = supµ,γ µ(N − r)− (γ1 + Nµ−∑N
i=1 ci)

=
∑N

i=1 ci − infµ,γ(γ1 + µr)

= MtMr − infµ,γ1(γ1 + µr).

(52)

The constraints of µ, γ1 are implied in (51), i.e.,

γ1 + nµ−
n∑

i=1

ci ≥ 0, 1 ≤ n ≤ N. (53)

Let us consider the optimization problem

infµ,γ1(γ1 + µr)

subject to γ1 + nµ−∑n
i=1 ci ≥ 0, 1 ≤ n ≤ N,

(54)
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γ
1

γ
1
+µr

r0 P N

M
t
 M

r

(n,c
1
+...+c

n
)

infγ
1
,µ (γ

1
+µ r)

Fig. 4. Visualization of γ1 + nµ and
∑n

i=1 ci.

which is depicted in Figure 4. The cost function γ1 + µr can be represented by the dashed line passing the point

(0, γ1) with slope µ. The N + 1 dots in Figure 4 have coordinates (n,
∑n

i=1 cn), 0 ≤ n ≤ N , which are indexed

from left to right as the zero-th to the N th point. The constraints (γ1 + nµ ≥ ∑n
i=1 ci) mean that the dashed line

should always be above the N + 1 points. Hence we see that the function infγ1,µ γ1 + µx subject to the constraints

given in (54) is the upper edge of the convex hull spanned by the N + 1 points. The slope of the straight line

passing the two points with indices p (p < N ) and N is

µ =

∑N
n=p cn

N − p
=

(Mr − p)(Mt − p)
N − p

We refer to the points on the edge of the convex hull as “active points”. The N th point is an “active point”. Then

the adjacent “active point” to the N th point must have the index defined in (34). Otherwise a line passing the

N th and the pth (p 6= P ) points would be below the P th point, which violates the constraint of (53). Because cn

decreases as n increases for n ≤ N − 1, all the points with index less than P are “active”. According to (42),

n∑

i=1

ci =





(Mt + Mr − n)n 1 ≤ n ≤ N − 1

MtMr n = N.

Therefore the edge of the convex hull, i.e., infγ1,µ µ + γ1r, is obtained by connecting the P + 2 points with

coordinates

{(n, (Mt + Mr − n)n)}P
n=0 , (N,MtMr). (55)

Since dp(r) = MtMr − (infγ1,µ µ + γ1r) and MtMr − (Mt + Mr − n)n = (Mr − n)(Mt − n), we conclude that

dp(r) is also a piecewise linear curve obtained by connecting

{(n, (Mt − n)(Mr − n))}P
n=0 , (N, 0). (56)
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To see that this D-M tradeoff is an upper bound for any AS strategy, it is sufficient to note that

I(ΛN , ρ) ≥ log
∣∣∣I + HSr,St

H∗
Sr,St

ρ

N

∣∣∣

holds for any Sr,St with |Sr| = Lr and |St| = Lt, where I(ΛN , ρ) is defined in (16). We have proved the theorem.

B. Extension to Non-Rayleigh Fading Channel

The D-M tradeoff analysis in [5] is based on the assumption of iid Rayleigh fading channel. Recently, [35]

extends the result of [5] to the more general cases where the entries of H have distribution:

f|hij |(x) = axte−b|x−c|β , x ≥ 0, (57)

which includes the Rician and Nakagami fading channels as special cases. It is shown that for an Mr×Mt MIMO

channel with distribution given in (57), the optimal D-M tradeoff is a piece-wise linear curve obtained by connecting

the K + 1 points: (
0,

(
1 +

t

2

)
MtMr

)
, {(k, (Mr − k)(Mt − k))}K

k=1 . (58)

That is, the channel with distribution (57) may have better D-M tradeoff than the Rayleigh channel for r ∈ [0, 1),

while it has the same tradeoff as the Rayleigh channel for r ∈ [1,K].

Note that the bound in (18) is obtained without assuming the distribution of H. Therefore according to (35),

Poutage,p(r, ρ) .= P

(
N∑

n=1

log
(
1 + ρλ2

n

)
< r log ρ

)
. (59)

Combining the results in [35] and the derivations leading to (39), we can show that

Poutage,p(r, ρ) .=
∫

A+

K∏

k=1

ρ−[(M−K)+1]αk

∏

k<j

(ρ−αk − ρ−αj )2ρ−
t

2
MrMtα1dα, (60)

Similar to the derivations from (39) to (43), we can obtain the optimal D-M tradeoff of the pruned channel as

dp(r) = infαn

∑N
n=1 cnαn

subject to 0 < α1 ≤ α2 ≤ · · · ≤ αN < 1
∑N

n=1 αn > N − r.

(61)

The only difference between (61) and (43) is that here

cn =





t
2MrMt + Mt + Mr − 1 n = 1

Mt + Mr − 2n + 1 n = 2, · · · , N − 1

(Mt −N + 1)(Mr −N + 1) n = N.



17

Following the arguments similar to those in the proof of Theorem 4.1, we can show that for the general fading

channel, the optimal D-M tradeoff of the pruned channel is also a piecewise linear curve obtained by connecting

the following P + 2 points
{

n, (Mr − n)(Mt − n) +
tMtMr

2
δ(n)

}P

n=0

, (N, 0), (62)

where

δ(n) =





1 for n = 0

0 for n 6= 0,

and
P = arg minp

(Mr−p)(Mt−p)+ tMtMr
2

δ(p)

N−p

subject to 0 ≤ p ≤ N − 1, p ∈ Z.
(63)

Consider an iid channel with the same dimension as the one in Figure 3 but with distribution given in (57) where

t = 2. Figure 5 shows that the optimal D-M gain tradeoff of the pruned MIMO channels. Comparing Figures 3

and 5, we see that for N = 2, the pruned non-Rayleigh channel has better D-M tradeoff than Rayleigh channel

even for r ∈ (1, 2).
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Fig. 5. Optimal D-M tradeoffs of full and pruned non-Rayleigh MIMO channels whose entries have distribution (57) with t = 2.

We conclude this section by emphasizing that the CDA based STBCs [8] with minimum delay T = Lt achieve

the optimal D-M gain tradeoff of the pruned channel since they are approximately universal and hence is D-M

tradeoff-optimal in any fading channel [25].

V. CONCLUSION

The conclusion is given at the end of [23].
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APPENDIX

We analyze the numbers of complex multiplication involved in the proposed AS algorithm. At the ith step,

the AS algorithm compares the column norms of an (Mr − i + 1) × (Mt − i + 1) submatrix, which requires

(Mr − i + 1)(Mt − i + 1) multiplications. Calculating the Householder Qi and left multiplying the channel matrix

by Qi requires about 3(Mr − i + 1) + 4(Mr − i + 1)(Mt − i + 1) multiplications (see, e.g., [?, Sections 5.1.3 and

5.1.4]). Hence the total number of complex multiplications in the transmit AS is
Lt∑

i=1

[5(Mr − i + 1)(Mt − i + 1) + 3(Mr − i + 1)]

=
1
6
Lt

(
30MrMt + 10L2

t − 15LtMt − 15LtMr + 33Mr + 15Mt − 24Lr + 14
)
. (64)

We see that the computational complexity of our proposed AS algorithm is of order O(LtMrMt), which is similar

to the algorithm proposed in [17] which has complexity O((Mr +Mt)MtLt). Clearly, the computational complexity

of receiving antennas selection after transmit antenna selection is of order O(LrMrLt).
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