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Abstract

In Part I of this paper, we have established the fundamental D-M tradeoff of a RF-chain limited MIMO system as a

function of transmitting antenna number Mt, receiving antenna number Mr, and N , min(Lt, Lr) where Lt and Lr are

the numbers of the RF-chains at the transmitter and receiver respectively. Here we continue the investigation by studying

two interesting schemes, i.e., the vertical bell-labs layered space time (V-BLAST) and the geometric mean decomposition

(GMD) transceiver design, both applied to a RF-chain limited MIMO system with optimal antenna selection (AS). The

V-BLAST scheme is popular in that it can achieve high spectral efficiency with simple scalar coding/decoding. However,

it is also known to have maximal diversity gain only Mr − Mt + 1 when applied to a full Mr × Mt system. In this

paper, we show that with optimal antenna selection, the diversity gain of V-BLAST can be greatly improved i.e., it can

achieve the D-M tradeoff dvb,p(r) = (Mr − N + 1)(Mt − N + 1)(1 − r
N ). Due to the analogy between the V-BLAST

scheme in a MIMO channel and the successive interference cancellation (SIC) detector in a multi-access channel (MAC),

our result sheds lights on the benefits of opportunistic communications facilitated by finite rate feedback. The GMD

scheme has the same receiver as V-BLAST. However, it exploits the channel state information at transmitter (CSIT)

to perform some channel-dependent unitary precoding. We derive the D-M tradeoff of the GMD scheme applied to the

RF-Chain limited system. The GMD scheme is shown to be significantly better than the V-BLAST, although it is still

D-M tradeoff suboptimal in general.
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I. Introduction

This paper continues the D-M tradeoff study of RF-limited MIMO system by studying two interesting

schemes, i.e., the vertical bell-labs layered space time (V-BLAST) [1] and the geometric mean decomposition

(GMD) transceiver design [2] applied to a RF-chain limited MIMO system with antenna selection (AS).

It is well-known that V-BLAST can achieve the high spectral efficiency of a multi-input multi-output

(MIMO) channel in that it can convert via successive interference cancellation (SIC) the MIMO chan-

nel into multiple parallel layers, through which the independently coded data substreams can be spatially

multiplexed and be transmitted over the same time and frequency slot. However, the convenience of in-

dependent coding/decoding comes with poor D-M tradeoff performance. It was shown in [3] that in an

Mr × Mt iid Rayleigh fading channel, the V-BLAST with independent coding/decoding on each layer can

only achieve maximal diversity gain Mr − Mt + 1 even with optimal detection ordering. In this paper, we

will show that the D-M tradeoff of V-BLAST gets much better when combined with channel-dependent AS.

In particular, we prove that the V-BLAST combined with an optimal AS can achieve the D-M tradeoff

dvb,p(r) = (Mr −N + 1)(Mt−N + 1)
(
1− r

N

)
. where N is the smaller number of the RF-chains at the trans-

mitter and receiver. Moreover, the V-BLAST combined with the fast AS algorithm introduced in Part I of this

paper can achieve this diversity gain. Due to the analogy between the V-BLAST scheme in a MIMO channel

and the successive interference cancellation (SIC) detector in a multi-access channel (MAC), our result gives

insights into the multiuser diversity and the benefits of opportunistic user selection facilitated by finite rate

feedback.

The GMD scheme shares the same detector as the V-BLAST, therefore it also admits independent cod-

ing/decoding. 1 By exploiting the channel state information at transmitter (CSIT), the GMD can achieve

diversity gain (M − K + 1)K [4, Section IV.C] where M , max(Mr,Mt) and K , min(Mr,Mt). When

combined with the an optimal AS, the GMD scheme can achieve D-M tradeoff

dgmd,p(r) =
(Mr − P )(Mt − P )

N − P
(N − r) (1)

where P = arg min
0≤p≤N−1, p∈Z

(Mr − p)(Mt − p)
N − p

. Clearly the GMD scheme is still suboptimal compared to the

fundamental D-M tradeoff derived in Part I of this paper.

The rest of the paper is organized as following. In Section II, we present the D-M tradeoff of V-BLAST with

antenna selection, the implication of the results to opportunistic multiuser communication is also discussed.

In Section III, we derived the D-M tradeoff of the GMD scheme. The simulation results are presented in

Section IV to validate our theoretical analysis. Section V concludes this paper.
1The GMD scheme also has a implementation form based on the dirty paper precoding[2].
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II. Study of V-BLAST

In this section, we analyze the D-M gain tradeoff of the V-BLAST scheme [1] applied to RF-limited MIMO

systems. The twin motivation for considering the V-BLAST architecture is because of its low complexity in

MIMO links and also its applicability to multiple-access communication [5][6]. In the latter case, transmit

antenna selection is equivalent to (channel-dependent or opportunistic) user selection and is made possible

through a few bits of common feedback from the receiver to the transmitting users. A comparison with

optimum decoder performance with receiver-only CSI reveals the benefit of such feedback both in terms of

performance and complexity.

A. V-BLAST

The V-BLAST architecture is a simple and popular scheme capable of reaping a large portion of the

high spectral efficiency of MIMO systems. When applied to the pruned channel, the V-BLAST architecture

applies independent coding for Lt substreams with equal rate. The substreams are then transmitted simulta-

neously through the Lt selected transmit antennas. At the receiver side, the V-BLAST detects and decodes

the substreams one by one through the successive interference cancellation (SIC) procedure. To make the

SIC procedure work properly, the V-BLAST architecture should have more receive antennas than transmit

antennas, i.e., Lr ≥ Lt (= N).

Denote HSr,St ∈ CLr×Lt as the pruned channel matrix. Let HSr,St = Q̆R̆ be the QR decomposition. If the

zero forcing (ZF) interference cancellation is used, then after applying SIC, the ith data substream experiences

a fading channel whose channel gain is r̆ii which is the ith diagonal element of R̆. To study the D-M gain

tradeoff V-BLAST with AS, we need to analyze the distributions of r̆2
ii around origin, for which we have the

following theorem.

Theorem II.1: Consider the iid Rayleigh channel given in [7, eq.(1)]. For any pruned channel matrix HSr,St ∈
CLr×Lt , the following inequality holds

− lim
ε→0+

logP(r̆2
ii < ε)

log ε
≤ (Mt − i + 1)(Mr − i + 1), 1 ≤ i ≤ N. (2)

Moreover, if the pruned channel is obtained through the proposed fast AS algorithm, then

− lim
ε→0+

logP(r̆2
ii < ε)

log ε
= (Mt − i + 1)(Mr − i + 1), 1 ≤ i ≤ N. (3)

Proof: See Appendix.

Denote the overall multiplexing gain as r (r ≤ Lt). Each substream has multiplexing gain r
N . The ith

substream is in outage if r̆2
ii < ρ

r
Lt
−1, which, according to Theorem II.1, has probability

P
(i)
outage,vb

.= ρ
(Mr−i+1)(Mt−i+1)( r

Lt
−1)
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if the fast AS algorithm is used. Hence the overall outage probability of the V-BLAST is dominated by that

of the Nth substream, i.e.,

Poutage,vb
.= ρ(Mr−N+1)(Mt−N+1)( r

N
−1).

Therefore the D-M gain tradeoff of the V-BLAST combined with the fast AS algorithm is

dvb,p(r) = (Mr −N + 1)(Mt −N + 1)
(
1− r

N

)
. (4)

Moreover, as implied by Theorem V.1 in Appendix, this tradeoff is also the upper bound to the V-BLAST

with any AS approach. As a special case, when N = Mt,

dvb,full(r) = (Mr −Mt + 1)
(

1− r

Mt

)
, (5)

which implies that the maximal diversity gain of V-BLAST is Mr −Mt + 1. Indeed, it has been proven in [3]

that the V-BLAST has maximal diversity gain Mr −Mt + 1 even with optimal detection ordering.
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Fig. 1. D-M tradeoffs of the full (RF-chain non-limited) and pruned (RF-chain limited) V-BLAST systems

Figure 1 compares the D-M gain tradeoff of the pruned V-BLAST along with the optimal tradeoff. We note

that antenna selection can improve the D-M tradeoff of V-BLAST at low multiplexing gain regime. The D-M

tradeoff of V-BLAST is significantly worse than the optimum except for the special case N = 1.

In the recent work [8] where the same problem is considered except that the authors restrict their discussion

to transmit AS only. Using a geometrical approach, the upper and lower bounds are given with respect to the

maximal diversity gain of V-BLAST with transmit AS [8, Theorem II]:

(Mt − Lt + 1)(Mr − Lt + 1) ≤ dvb,p ≤ (Mt − Lt + 1)(Mr − 1) (6)
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According to Theorem II.1, we see that the upper bound is in fact unattainable except for Lt = 2.

Note that the V-BLAST effectively decomposes a MIMO channel into multiple scalar subchannels/layers.

It is known that the uncoded quadrature amplitude modulation (QAM) is universal over scalar channels [9].

Hence we conclude that the tradeoff given in (4) is achievable even using uncoded QAM, with frame length

T = 1.

A.1 Implication for the Multiple-Access Channel and Opportunistic User Selection

Since V-BLAST is also applicable to the multi-access channel (MAC) [5][6] where multi-users communicate

with the multi-antenna base station (BS), Theorem II.1 also has implications for the MAC. Consider a multi-

access channel with Mt single-antenna users and the BS which has Mr antennas. In practice, Mt is usually

far greater than Mr. Hence, to make V-BLAST work, only Lt ≤ Mr < Mt users are selected for simultaneous

transmission. Such user selection is made possible by log2

(
Mt

Lt

)
bits of common feedback to all users.

Thus transmit AS in MIMO links corresponds to user selection in the MAC. Through this opportunistic user

selection and with each selected user assigned a common multiplexing gain of r/Lt, the MAC even with the

suboptimal V-BLAST receiver has the D-M tradeoff dmac,opp(r) = (Mr − Lt + 1)(Mt − Lt + 1)(1− r
Lt

).

It is interesting to compare the above scheme with what achieved in a MAC with just receiver CSI as

obtained in [5][6]. Consider the case where Lt out of Mt users are selected in channel-independent round-

robin fashion and suppose that a joint optimal decoder is used at the receiver. When Lt ≤ Mr, the D-M

gain tradeoff is simply dmac(r) = Mr(1 − r
Lt

). Hence, whenever the number of users Mt is greater than

Mr(Mr−Lt +1)−1 +Lt−1, we have dmac,opp(r) > dmac(r) which means that the D-M tradeoff performance of

the system with opportunistic user selection but a sub-optimal successive cancellation based decoder uniformly

dominates that of even the optimal decoder but with channel-independent user selection (with CSI only at

receiver). The more users there are in the system, the greater the performance improvement and hence

we have here a realization of multiuser diversity. Our result indicates that a huge performance gain and

reduced complexity decoding can result due to the finite rate feedback (of log2

(
Mt

Lt

)
bits) which facilitate

collaboration between the multiple users and the BS for opportunistic data transmission.

III. D-M Tradeoff of Geometric Mean Decomposition Scheme

In this section, we analyze the D-M tradeoff of the GMD scheme applied to a RF-chain limited system with

AS. The GMD architecture is suitable for MIMO links with perfect CSI at receiver and transmitter [2].

A. Brief Introduction to GMD

The GMD scheme is based on the following theorem [10].
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Theorem III.1: For any rank K matrix H ∈ CMr×Mt with singular values λ1 ≥ λ2 ≥ · · · ≥ λK > 0, there

exists an upper triangular matrix R ∈ RK×K with identical diagonal elements

rii = λ̄ ,
(

K∏

k=1

λk

) 1
K

, 1 ≤ i ≤ K, (7)

and orthonormal matrices Q ∈ CMr×K and P ∈ CMt×K , such that H = QRP∗.

A computationally efficient algorithm for the GMD matrix decomposition is given in [10]. Precoding the

information vector s ∈ CK to be x = Ps and applying the linear filter to the received data vector y, we have

ỹ = Q∗y = Q∗HPs + Q∗z = Rs + z̃. (8)

Here R is a upper triangular matrix with all the diagonal elements equal to the geometric mean of {λk}K
k=1.

Using decision feedback equalizer (DFE) at receiver or dirty paper precoder (DPP) at transmitter, we can

remove the inter-substream interference due to the off diagonal elements of R and obtain K identical effective

parallel subchannels with output SNR

ρgmd =

(∏K
k=1 λk

) 2
K

ρ

K
. (9)

Note that the GMD transceiver design requires feeding either full CSIT or the precoder matrix P from re-

ceiver to transmitter. We see that the AS helps reduce the overhead of feedback as it prunes the dimensionality

of the channel.

B. D-M Tradeoff of GMD with AS

According to Theorem [7, Theorem III.1],

(Mt −N)!(Mr −N)!
Mr!Mt!

N∏

n=1

λ2
n ≤

N∏

n=1

λ̆2
n ≤

N∏

n=1

λ2
n (10)

Combined with AS, GMD converts the pruned channel into N subchannel with equal output SNR:

ρgmd =

(
N∏

n=1

λ̆2
n

)1/N
ρ

N
. (11)

The outage probability of GMD scheme is

Pgmd,outage = P
(
log(1 + ρgmd) <

r

N
log(1 + ρ)

)

.= P
(
ρgmd < ρ

r
N

)

.= P

(
N∏

n=1

λ̆2
n < ρr−N

)
(12)

(by (10)) .= P

(
N∏

n=1

λ2
n < ρr−N

)
. (13)
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Defining λn = ρ−αn and following the similar derivations leading to [7, eq. (43)], we obtain the D-M tradeoff

of GMD as

dgmd,p(r) = inf
αn

N∑

n=1

cnαn

subject to 0 < α1 ≤ α2 ≤ · · · ≤ αN (14)
N∑

n=1

αn > N − r,

where

cn =





Mt + Mr − 2n + 1 n = 1, · · · , N − 1

(Mt −N + 1)(Mr −N + 1) n = N,
(15)

Comparing [7, eq. (43)] with (14) we see that the only difference between the two optimization problems is

that αN is not upper bounded in (14). The problem of (14) is also a convex optimization problem whose

Lagrangian is

L(α, µ,γ) =
N∑

n=1

cnαn − µ[
N∑

n=1

αn − (N − r)]− γ1α1 −
N∑

n=2

γn(αn − αn−1), (16)

where the multipliers µ,γ ≥ 0. Again, according to the convex optimization theory

dgmd,p(r) = inf
α

sup
µ,γ

L(α, µ,γ). (17)

According to the complementary slackness condition,

γ1α1 =
N∑

n=2

γn(αn − αn−1). (18)

Equating to zero the partial derivative of the Lagrangian with respect to αn we obtain the relations

cn =





µ + γn − γn+1 1 ≤ n ≤ N − 1

µ + γN n = N.
(19)

Inserting (18) and (19) into (17) yields

dgmd,p(r) = infα supµ,γ

∑N−1
n=1 (µ + γn − γn+1)αn + (µ + γN )αN

= infα supµ,γ µ
∑N

n=1 αn +
∑N−1

n=1 (γn − γn+1)αn + γNαN .
(20)

Using the relations in (18) and some straightforward algebra, we obtain

N−1∑

n=1

(γn − γn+1)αn + γNαN = 0. (21)

Combining (20) and (21) we obtain

dgmd,p(r) = infα supµ µ
∑N

n=1 αn

= supµ µ(N − r).
(22)
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It follows from the N equations in (19) that µ is subject to the following N constraints:

Nµ + γ1 =
N∑

n=1

cn (23)

and

γ1 + nµ−
n∑

i=1

ci = γn+1 ≥ 0, 1 ≤ n ≤ N − 1. (24)

Hence as visualized in [7, Figure 4], the line f(r) = µ + γ1r must (i) pass the Nth point due to the constraint

of (23) and (ii) be above all the other N − 1 points because of the N constraints in (24). We conclude that

supµ corresponds to the slope of the line passing the Nth and the P th points where

P = arg minp
(Mr−p)(Mt−p)

N−p

s.t. 0 ≤ p ≤ N − 1, p ∈ Z
(25)

as given in [7, eq. (34)]. Therefore we have obtained the D-M tradeoff of GMD

dgmd,p(r) =
(Mr − P )(Mt − P )

N − P
(N − r). (26)

We compare the D-M tradeoff of GMD with AS against the optimal D-M tradeoff of the RF-chain non-

limited (full) system in Figure 2. The full system is an iid Rayleigh channel with 5 transmit and 6 receive

antennas.
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Some observations are in order. (i) The D-M tradeoff of the GMD scheme is always a straight line connecting
(

0,
(Mr − P )(Mt − P )N

N − P

)
, and (N, 0).



9

11 12 13 14 15 16 17
10

−3

10
−2

10
−1

10
0

SNR (dB)

O
ut

ag
e 

P
ro

b.

M
t
=M

r
=4, L

t
=L

r
=3, Rate = 12 bps/Hz

Full System
Optimal AS
Fast AS

Fig. 3. Outage probabilities of the full MIMO system and the pruned system obtained via optimal AS and proposed

fast AS algorithm

In particular, for a full system with N = K, then P = K − 1 and the GMD has the maximal diversity gain

(M −K + 1)K, which agrees with the result in [4, Section IV.C]. (ii) The GMD has the same D-M tradeoff

as the optimal one for multiplexing gain r ≤ P . (iii) Because the first piece of the optimal D-M tradeoff has

slope Mt + Mr − 1, we see that if
MtMr

N
≥ Mt + Mr − 1,

i.e.,

N ≤ MtMr

Mt + Mr − 1
,

then the D-M tradeoffs of GMD and the optimal are the same. (iv) The GMD is in general suboptimal

because the scheme fails if the smallest singular value vanishes, which can be seen from (9). (v) Somewhat

similar to the V-BLAST case, AS may improve the D-M tradeoff of the GMD scheme for low multiplexing

gain, which can be explained by noting that AS makes the channel less ill-conditioned and hence improve the

smallest singular value of the pruned channel matrix.

Similar to the argument preceding Section II-A.1, we can also conclude that the tradeoff of GMD given in

(26) is achievable using uncoded QAM, with frame length T = 1.

IV. Numerical Examples

We present four numerical examples to validate the preceding theoretical analysis. We remark that the

covariance of the input signal vector is constrained to be a scaled identity matrix for all the simulations.

The first example shows the near optimal performance of the proposed fast AS algorithm. Consider pruning
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a 4 × 4 iid Rayleigh channel into a 3 × 3 channel. Given the target rate 12 bps/Hz, Figure 3 compares the

channel outage probabilities of the full system, the pruned system obtained using the proposed fast algorithm,

and the optimally pruned one obtained through exhaustive search over
(

4

3

)
×

(
4

3

)
= 16 combinations.

We see that the performance of the proposed fast AS algorithm is very close to the optimal.

In the second example, we compare the outage probabilities P(r2
ii < ε) and P(r2

ii,max < ε) in a 3-by-3

system. Here rii is the gain of the ith layer obtained via DFD using the greedy ordering rule, and rii,max

is the maximum of rii over all the Mt! permutations, for i = 1, . . . , Mt. We run 105 Monte Carlo trials to

obtain Figure 4. The probabilities P(r2
ii,max < ε), i = 2, 3 are the marked solid lines while P(r2

ii < ε), i = 2, 3

are represented by the marked dot lines. It is easy to see from [7, Section III] that the Greedy QR yields

r11 = r11,max. Hence P(r2
11,max < ε) = P(r2

11 < ε) and they are represented by the leftmost unmarked solid line.

We may observe that the greedy ordering achieves the maximal diversity gains, which agrees with Theorem

II.1. From the theoretical analysis, the diversity gains of the three layers are D1 = 9, D2 = 4 and D3 = 1. At

first sight, one may see through comparing the two lines − and − ◦− that the diversity gain difference of r11

and r22,max is seemingly smaller than the theoretical analysis: D1 = 9, D2 = 4. Indeed, with a large diversity

gain, the outage probability curve approaches a vertical line and increasing the diversity gain further yields

only marginal performance gain. It is important to note that there does not exist an ordering which can yield

rii,max for each i simultaneously.
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In the third example, we applies the greedy AS algorithm to a MAC channel as user selection (US). Consider

a MAC channel where there are Mt (Mt = 10) single-antenna users and a base-station with five receiving
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antennas. We consider two schemes. For one Lt (Lt = 5) users are randomly selected and a ML receiver is

deployed. For the other, Lt users are selected by the greedy AS algorithm and the receiver is an ordered V-

BLAST scheme [11]. Figure 5 compares the two scheme. We see that when combined with the US algorithm,

the simple and suboptimal V-BLAST scheme can even outperform the optimal ML receiver but with random

US. Indeed, here the ML receiver can achieve the maximal diversity gain Mr = 5 [6] while the V-BLAST

combined with greedy US can achieve the maximal diversity gain d = (Mr − Lr + 1)(Mt − Lt + 1) = 6.
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Fig. 5. The outage probabilities of MAC with ML receiver and random user selection (US) versus the ordered V-BLAST

scheme cobmined with greedy user US. The sum rate is 10 bps/Hz and is equally distributed among five users.

In the last example, we compare the outage probabilities of GMD architecture and the optimal system

(with CSI at transmitter and receiver) with and without AS. The channel is an i.i.d. Rayleigh fading channel

with Mt = 5 and Mr = 6. The target rate is 14 bps/Hz. Figure 6 shows the significant performance gap

between the optimal and the GMD schemes in the full system. In particular, the optimal system has much

higher diversity gain than the GMD scheme. According to the D-M tradeoff analysis, GMD has a maximal

diversity gain of (Mr−Mt +1)Mt = 10 while the optimal system has a maximal diversity gain of MtMr = 30.

By applying the fast AS algorithm, we obtain a pruned channel with Lt = Lr = 3. In such a system, the

GMD and the optimal systems have almost the same outage probabilities. This result agrees with the D-M

gain tradeoff analysis. Indeed, it can be seen from [7, Fig. 3] and 2 that the GMD and optimal systems have

the same D-M tradeoff when N = 3.
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V. Conclusion and Discussions

In this two-part paper we have studied the fundamental diversity-multiplexing (D-M) tradeoff of a MIMO

system with antenna selection (AS) at both transmitter and receiver side. We show that a MIMO system

with AS has the same D-M tradeoff as the full system if the multiplexing gain is less than some threshold

P , although it can suffer from considerable diversity gain loss for the multiplexing gain r ≥ P . Our analysis

yields a fast yet D-M tradeoff-optimal AS algorithm. We also study the D-M tradeoffs of the V-BLAST and

GMD space-time architectures applied to pruned channels. We show that for both V-BLAST and GMD, the

pruned channel may have better D-M tradeoff than the full system in the low multiplexing gain regime.

The D-M tradeoff analysis may provide useful guidance for practical system design in two aspects. First,

it enables us to quantify the D-M tradeoff loss relative to the full system and hence quantify the price paid

for reduced hardware and computational complexity. The same analysis can also be viewed as the D-M

tradeoff improvement due to introducing additional transmit and receiver antennas but with no increase of

the hardware/software complexity through antenna selection. Second, just transmit antenna selection within

the V-BLAST architecture corresponds to the problem of user selection in a multiple-access channel with a

nulling-successive cancellation decoder. Our results here indicate that a D-M gain tradeoff that is superior

to that achievable with the optimum decoder can be obtained in spite of the sub-optimality of the V-BLAST

decoder, thanks to a few bits of feedback broadcast to all users as to which of them is to transmit based on

the realized channels of all users at the common receiver. Combined with such results, we can determine the

number of the selected antennas. If the system operates at the multiplexing gain r, we can determine the
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smallest number N such that P ≥ r. For instance, as we shown in [7, Fig. 3], for a 6× 5 channel if 2 < r < 3,

then Lt = Lr = 4 is sufficient.

Appendix

We have proven in [12] the following theorem.

Theorem V.1: Consider the ordered QR decomposition HΠ = QR where Π is a permutation matrix

dependent on H. Let rii be the ith diagonal of R. The inequality

− lim
ε→0+

logP(r2
ii < ε)

log ε
≤ (Mt − i + 1)(Mr − i + 1), 1 ≤ i ≤ N, (27)

holds for any channel-dependent permutation matrix Π.

Denote H:,St ∈ CMr×Lt as the channel matrix after transmit AS, and H:,St = Q̃R̃ as its QR decomposition.

Then according to Theorem V.1, for any St the diagonal elements of R̃ satisfy

− lim
ε→0+

logP(r̃2
ii < ε)

log ε
≤ (Mt − i + 1)(Mr − i + 1), 1 ≤ i ≤ Lt(= N). (28)

For any submatrix of H:,St , which we denote as HSt,St whose QR decomposition is HSr,St = Q̆R̆, it is routine

to show that r̆2
ii ≤ r̃2

ii for 1 ≤ i ≤ N . Therefore, it follows from (28) that

− lim
ε→0+

logP(r̆2
ii < ε)

log ε
≤ (Mt − i + 1)(Mr − i + 1), 1 ≤ i ≤ N. (29)

Now the first part of Theorem II.1 is proven.

To prove the second part of Theorem II.1, we first recall the theorem implied in [13].

Lemma V.2 (See [13]) Consider the iid Rayleigh fading channel H given in [7, eq.(1)] with ordered singular

values λ1 ≥ λ2 ≥ · · · ≥ λMt > 0. Then

− lim
ε→0+

logP(λ2
i < ε)

log ε
= (Mt − i + 1)(Mr − i + 1), 1 ≤ i ≤ N. (30)

According to Theorem [7, Theorem III.1], νiλi ≤ λ̆i ≤ λi for some positive constant νi. Hence

− lim
ε→0+

logP(λ̆2
i < ε)

log ε
= − lim

ε→0+

logP(λ2
i < ε)

log ε
= (Mt − i + 1)(Mr − i + 1), 1 ≤ i ≤ N. (31)

Denote HSr,StΠ̆ = Q̆R̆ the greedy QR decomposition. It follows from Lemma [7, Lemma III.3] that r̆2
ii ≥

λ̆2
i

Lt−i+1 . Hence

− lim
ε→0+

logP(r̆2
ii < ε)

log ε
≥ − lim

ε→0+

logP(λ̆2
i < ε)

log ε
= (Mt − i + 1)(Mr − i + 1), 1 ≤ i ≤ N. (32)

Combining (32) and (29), we have proven the second part of Theorem II.1.
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