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Abstract. Given a complex matrix H, we consider the decomposition H = QRP∗, where R is
upper triangular and Q and P have orthonormal columns. Special instances of this decomposition
include (a) the singular value decomposition (SVD) where R is a diagonal matrix containing the
singular values on the diagonal, (b) the Schur decomposition where R is an upper triangular matrix
with the eigenvalues of H on the diagonal, (c) the geometric mean decomposition (GMD) [The
Geometric Mean Decomposition, Y. Jiang, W. W. Hager, and J. Li, December 7, 2003] where the
diagonal of R is the geometric mean of the positive singular values. We show that any diagonal for
R can be achieved that satisfies Weyl’s multiplicative majorization conditions:

k∏

i=1

|ri| ≤

k∏

i=1

σi, 1 ≤ k < K,

K∏

i=1

|ri| =

K∏

i=1

σi,

where K is the rank of H, σi is the i-th largest singular value of H, and ri is the i-th largest (in
magnitude) diagonal element of R. We call the decomposition H = QRP∗, where the diagonal of
R satisfies Weyl’s conditions, the generalized triangular decomposition (GTD).

The existence of the GTD is established using a result of Horn [On the eigenvalues of a matrix
with prescribed singular values, Proc. Amer. Math. Soc., 5 (1954), pp. 4–7]. In addition, we present
a direct (nonrecursive) algorithm that starts with the SVD and applies a series of permutations and
Givens rotations to obtain the GTD.

The GMD has application to signal processing and the design of multiple-input multiple-output
(MIMO) systems; the lossless filters Q and P minimize the maximum error rate of the network. The
GTD is more flexible than the GMD since the diagonal elements of R need not be identical. With
this additional freedom, the performance of a communication channel can be optimized, while taking
into account differences in priority or differences in quality of service requirements for subchannels.
Another application of the GTD is to inverse eigenvalue problems where the goal is to construct
matrices with prescribed eigenvalues and singular values.
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1. Introduction. Given a rank K matrix H ∈ Cm×n, we consider the decom-
position H = QRP∗ where R is a K by K upper triangular matrix, Q and P have
orthonormal columns, and * denotes conjugate transpose. Special instances of this
decomposition are, in chronological order:

(a) The singular value decomposition (SVD) [2, 20]

H = VΣW∗,

where Σ is a diagonal matrix containing the singular values on the diagonal.
(b) The Schur decomposition [24]

H = QUQ∗,

where U is an upper triangular matrix with the eigenvalues of H on the
diagonal.

(c) The QR factorization [7, 15]

H = QR,

where R is upper triangular and Q is unitary (here P = I).
(d) The complete orthogonal decomposition [9, 11]

H = Q2R2Q
∗
1,

where H∗ = Q1R1 is the QR factorization of H∗ and R∗
1 = Q2R2 is the QR

factorization of R∗
1.

(e) The geometric mean decomposition (GMD) [16, 18, 21, 29]

H = QRP∗,

where R is upper triangular and the diagonal elements are the geometric
mean of the positive singular values.

In this paper, we consider the general class of decompositions H = QRP∗, where
the diagonal r of R is prescribed. We show that such a decomposition exists if r is
“multiplicatively majorized” by the singular values of H. More precisely, given two
vectors a,b ∈ Rn, we write a ≺ b if

k∏

i=1

|a[i]| ≤
k∏

i=1

|b[i]| whenever 1 ≤ k ≤ n,

where “[i]” denotes the component of the vector with i-th largest magnitude. If a ≺ b
and

n∏

i=1

|ai| =
n∏

i=1

|bi|,

we write a ¹ b. We show that for any vector r ∈ CK , the decomposition H = QRP∗

can be achieved if r ¹ σ, where σ is the vector consisting of the positive singular
values of H. We call this decomposition the generalized triangular decomposition
(GTD) based on r.

Since singular values are invariant under unitary transformations, it follows that
H and R have the same singular values. Since R is upper triangular, its eigenvalues
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are the diagonal elements ri, 1 ≤ i ≤ K. By a theorem [27] of Weyl, r ¹ σ. An
inverse result is given by Horn [13]: For any r for which r ¹ σ, there exists an upper
triangular matrix R with diagonal elements ri and singular values σi, 1 ≤ i ≤ K. As
a consequence of Horn’s result, we show in Section 2 that for any H ∈ Cm×n of rank
K and for any r ∈ CK with r ¹ σ, where σ is the vector of positive singular values for
H, there exist matrices Q and P with orthonormal columns such that H = QRP∗,
where R ∈ CK×K is upper triangular with diagonal equal to r.

In Section 3 we give an algorithm for evaluating the GTD. Similar to our algorithm
for the GMD, we start with the singular value decomposition, and apply a series of
permutations and Givens rotations to obtain H = QRP∗. This is a direct method,
in contrast to Chu’s [4] recursive procedure for constructing matrices with prescribed
eigenvalues and singular values based on Horn’s divide and conquer proof of the
sufficiency of Weyl’s product inequalities. In Section 4, we express the GTD update
in terms of unitary transformations applied to the original matrix as opposed to
Givens rotations applied to the singular value decomposition. Section 5 focuses on
the numerical stability of the GTD update when the arithmetic is inexact. Since the
rotations in the GTD update are expressed in terms of a ratio that reduces to zero
over zero when two singular values coalesce, there is a potential for instability. We
show that GTD update is stable, even when singular values coalesce.

The GMD, where the diagonal of R is the geometric mean of the singular values
of H, is a solution of the following maximin problem, which arises when we try to
optimize the data throughput of a multiple-input multiple-output (MIMO) system
[16, 18]:

max
Q,P

min {rii : 1 ≤ i ≤ K}

subject to QRP∗ = H, Q∗Q = I, P∗P = I,

rij = 0 for all i > j, R ∈ RK×K .

(1.1)

In some applications, such as hybrid/multi-task data transmissions, different subchan-
nels may have different priorities and different quality of service requirements. In this
case, the GTD provides additional flexibility in designing the filters Q and P. Instead
of restricting ourselves toQ and P for which the diagonal r ofR = Q∗HP is constant,
as in the GMD, we consider Q and P for which r ¹ σ. This additional flexibility
allows us to achieve better performance in cases where the objective function is not
the maximin function in (1.1).

With the GMD, the diagonal elements of R are equal to the geometric mean
of the positive singular values, in which case r is multiplicatively majorized by the
singular values of H:

Lemma 1.1. Suppose H has rank K and let σ̄ be the geometric mean of the

positive singular values:

σ̄ =

(
K∏

k=1

σi

)1/K

(1.2)

Taking ri = σ̄, 1 ≤ i ≤ K, we have r ¹ σ.

Proof. For any k ∈ [1,K], either σ̄ ≤ σk or σ̄ > σk. If σ̄ ≤ σk, then

k∏

i=1

ri = σ̄k ≤
k∏

i=1

σi(1.3)
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since σi ≥ σk ≥ σ̄ for i ≤ k. On the other hand, if σk < σ̄, then

σ̄k
K∏

i=k+1

σi ≤ σ̄kσ̄K−k = σ̄K =

K∏

i=1

σi(1.4)

since σi ≤ σk < σ̄ for i > k. We divide (1.4) by the common factor

K∏

i=k+1

σi

to obtain (1.3). Hence, in either case, σ̄ ≤ σk or σ̄ > σk, (1.3) holds, which yields
r ≺ σ. Clearly, r ¹ σ by (1.2)

We conclude this introduction with a brief outline of the connection between the
GTD and MIMO systems. MIMO systems have been the subject of intense research
over the past decade since they can support amazingly higher data rates and reliability
than their single-input single-output (SISO) counterpart [5, 23, 25]. A MIMO system
can be modeled as follows:

y = Hx+ z,(1.5)

where x ∈ Cn is the transmitted data, y ∈ Cm is the received data, z ∈ Cm is
the noise, and H is the channel matrix. For example, (1.5) might model a wireless
communication network with n antennas transmitting data and with m antennas
receiving data. The matrix H describes the electronic characteristics of the network.

At any instant of time, the channel matrix H is a fixed entity depending on
the factors such as the location of the antennas. In order to optimize data through-
put, filters are applied to transmitted and received signals. Mathematically, a filter
corresponds to matrix multiplication.

Suppose the channel matrix is decomposed as H = QRP∗, where R is a K by K
upper triangular matrix, and P and Q are matrices with orthonormal columns. With
this substitution for H in (1.5), we obtain the equivalent system

ỹ = Rs+ z̃,(1.6)

with precoding x = Ps, with decoding ỹ = Q∗y, and with noise z̃ = Q∗z. The
matrices P and Q are the filters that are applied to the transmitted and received
signals.

The recent “dirty paper” coding method [6] shows that the upper triangular
system (1.6) is equivalent to K decoupled parallel subchannels

ỹi = riisi + z̃i, i = 1, . . . ,K.

Assuming the variance of the noise on the K subchannels is the same, the subchannel
with the smallest rii has the highest error rate. The maximin problem (1.1) arises
when we try to optimize the worst possible error rate. The maximum data throughput
is achieved when the filters P and Q are chosen to make the smallest rii as large as
possible.

In [18] and in [19], we show that the solution given by the GMD allows us to sig-
nificantly improve the overall bit error rate performance (the smallest rii is as large
as possible), while maximizing channel capacity and reducing the encoding/decoding

4



complexity (the diagonal elements of R are all equal). But when different subchan-
nels have different priorities and different quality of service (QoS) requirements, the
objective function may be different from that in (1.1), and the optimal R may not
have all its diagonal elements equal. For example, when transmitting both audio and
video data in a communication network, the accuracy of the video transmission may
need to be greater than the accuracy of the audio transmission. In this case, smaller
diagonal elements may be allowed for the audio (low accuracy) subchannels compared
to the video (high accuracy) subchannels.

A specific application of the GTD to communication with QoS constraints is given
in [17], where we present the following optimization problem:

minF tr (FF∗)

subject to

(
HF
IL

)
= QR

diag(R) = {√1 + ρi}L
i=1.

(1.7)

Here “tr” denotes the trace, F ∈ Cn×L is the precoder, IL is the L by L identity
matrix, the ρi, 1 ≤ i ≤ L, are related to the specified subchannel capacities, and
diag(R) denotes the vector formed by the diagonal of R, the upper triangular factor
in the QR decomposition of the “augmented matrix”

Ga =

(
HF
IL

)
.

The cost function tr (FF∗) represents the power required by the precoder. The opti-
mization problem amounts to finding the precoder which uses minimum power while
providing the specified subchannel capacities.

In [17] we show that (1.7) has a solution that can be expressed in the following
way: Let Φ ∈ RK×K be a diagonal matrix with diagonal elements φi, 1 ≤ i ≤ K,
chosen to solve the problem





minΦ
∑K

i=1 φi

subject to
∏k

i=1(1 + σ2
i φi) ≥

∏k
i=1(1 + ρi), φk ≥ 0, 1 ≤ k ≤ K − 1,

∏K
i=1(1 + σ2

i φi) =
∏L

i=1(1 + ρi),

(1.8)

where σi is the i-th largest singular value of H and ρ1 ≥ ρ2 . . . ≥ ρL. Then (1.8) has
a solution F = VΦ1/2ΩT where V is the trailing factor in the SVD H = UΣV∗ and
Ω is the matrix formed by the first K columns of the factor PT in the following GTD:

QRPT =

[
[ΣΦ1/2

...0K×(L−K)]
IL×L

]
, rii =

√
1 + ρi, 1 ≤ i ≤ L.(1.9)

The constraints in the reduced problem (1.8) are Weyl’s multiplicative majorization
conditions relating the diagonal of R in (1.7) to the singular values of the augmented
matrix Ga. When the constraints in (1.8) are satisfied, we ensure the existence of the
GTD in (1.9).

Another application of the GTD is to the construction of matrices that possess
a prescribed set of eigenvalues and singular values. As noted by Chu in [4], “Such a
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construction might be useful in designing matrices with desired spectral specifications.
Many important properties, such as the conditioning of a matrix, are determined by
eigenvalues or singular values.” See [12, Chapter 28] for a “gallery of test matrices.” In
[4] Horn’s proof of Weyl’s product inequalities is developed into a recursive procedure
svd eig for generating a matrix with prescribed singular values and eigenvalues. In
contrast, our algorithm for the GTD is a direct method based on a series of Givens
rotations and permutations. Given the singular values σ and the eigenvalues λ, with
λ ¹ σ, the GTD generates QRP∗ where λ lies on the diagonal of R and the singular
values of R are σ. Comparisons with Chu’s recursive algorithm are given in Section
6. Note that Chu’s routine svd eig does not generate an upper triangular matrix;
hence, it could not be used to obtain the GTD.

2. Existence of GTD. The following result is due to Weyl [27] (also see [14, p.
171]):

Theorem 2.1. If A ∈ Cn×n with eigenvalues λ and singular values σ, then

λ ¹ σ.

The following result is due to Horn [13] (also see [14, p. 220]):
Theorem 2.2. If r ∈ Cn and σ ∈ Rn with r ¹ σ, then there exists an upper

triangular matrix R ∈ Cn×n with singular values σi, 1 ≤ i ≤ n, and with r on the

diagonal of R.
We now combine Theorems 2.1 and 2.2 to obtain:

Theorem 2.3. Let H ∈ Cm×n have rank K with singular values σ1 ≥ σ2 ≥ . . . ≥
σK > 0. There exists an upper triangular matrix R ∈ CK×K and matrices Q and P
with orthonormal columns such that H = QRP∗ if and only if r ¹ σ.

Proof. If H = QRP∗, then the eigenvalues of R are its diagonal elements and the
singular values of R coincide with those of H. By Theorem 2.1, r ¹ σ. Conversely,
suppose that r ¹ σ. Let H = VΣW∗ be the singular value decomposition, where
Σ ∈ RK×K . By Theorem 2.2, there exists an upper triangular matrix R ∈ CK×K

with the ri on the diagonal and with singular values σi, 1 ≤ i ≤ K. Let R = V0ΣW
∗
0

be the singular value decomposition of R. Substituting Σ = V∗
0RW0 in the singular

value decomposition for H, we have

H = (VV∗
0)R(WW∗

0)
∗.

In other words, H = QRP∗ where Q = VV∗
0 and P =WW∗

0.

3. The GTD algorithm. Given a matrix H ∈ Cm×n with rank K and with
singular values σ1 ≥ σ2 ≥ . . . ≥ σK > 0, and given a vector r ∈ CK such that
r ¹ σ, we now give an algorithm for computing the decomposition H = QRP∗. This
algorithm for the GTD essentially yields a constructive proof of Theorem 2.2.

Let VΣW∗ be the singular value decomposition of H, where Σ is a K by K
diagonal matrix with the diagonal containing the positive singular values. We let
R(L) ∈ CK×K denote an upper triangular matrix with the following properties:

(a) r
(L)
ij = 0 when i > j or j > i ≥ L. In other words, the trailing principal

submatrix of R(L), starting at row L and column L, is diagonal.
(b) If r(L) denotes the diagonal of R(L), then the first L − 1 elements of r and

r(L) are equal. In other words, the leading diagonal elements of R(L) match
the prescribed leading elements of the vector r.

(c) rL:K ¹ r
(L)
L:K , where rL:K denotes the subvector of r consisting of compo-

nents L through K. In other words, the trailing diagonal elements of R(L)

multiplicatively majorize the trailing elements of the prescribed vector r.
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Initially, we set R(1) = Σ. Clearly, (a)–(c) hold for L = 1. Proceeding by
induction, suppose we have generated upper triangular matrices R(L), L = 1, 2, . . . , k,
satisfying (a)–(c), and unitary matrices QL and PL, such that R(L+1) = Q∗

LR
(L)PL

for 1 ≤ L < k. We now show how to construct unitary matrices Qk and Pk such that
R(k+1) = Q∗

kR
(k)Pk, where R

(k+1) satisfies (a)–(c) for L = k + 1.
Let p and q be defined as follows:

p = arg min
i
{|r(k)

i | : k ≤ i ≤ K, |r(k)
i | ≥ |rk|},(3.1)

q = arg max
i
{|r(k)

i | : k ≤ i ≤ K, |r(k)
i | ≤ |rk|, i 6= p},(3.2)

where r
(k)
i is the i-th element of r(k). Since rk:K ¹ r

(k)
k:K , there exists p and q satisfying

(3.1) and (3.2). Let Π be the matrix corresponding to the symmetric permutation

Π∗R(k)Π which moves the diagonal elements r
(k)
pp and r

(k)
qq to the k-th and (k+ 1)-st

diagonal positions respectively. Let δ1 = r
(k)
pp and δ2 = r

(k)
qq denote the new diagonal

elements at locations k and k + 1 associated with the permuted matrix Π∗R(k)Π.
Next, we construct unitary matrices G1 and G2 by modifying the elements in the

identity matrix that lie at the intersection of rows k and k + 1 and columns k and
k+1. We multiply the permuted matrix Π∗R(k)Π on the left by G∗

2 and on the right
by G1. These multiplications will change the elements in the 2 by 2 submatrix at the
intersection of rows k and k+1 with columns k and k+1. Our choice for the elements
of G1 and G2 is shown below, where we focus on the relevant 2 by 2 submatrices of
G∗

2, Π
∗R(k)Π, and G1:

rk

|rk|2

[
cδ∗1 sδ∗2
−sδ2 cδ1

] [
δ1 0
0 δ2

] [
c −s
s c

]
=

[
rk x
0 y

]

(G∗
2) (Π∗R(k)Π) (G1) (R(k+1))

(3.3)

If |δ1| = |δ2| = |rk|, we take c = 1 and s = 0; if |δ1| 6= |δ2|, we take

c =

√
|rk|2 − |δ2|2
|δ1|2 − |δ2|2

and s =
√

1− c2.(3.4)

In either case,

x =
sc(|δ2|2 − |δ1|2)rk

|rk|2
and y =

δ1δ2rk

|rk|2
.(3.5)

Figure 3.1 depicts the transformation from Π∗R(k)Π to G∗
2Π

∗R(k)ΠG1. The
dashed box is the 2 by 2 submatrix displayed in (3.3). Notice that c and s, defined in
(3.4), are real scalars chosen so that

c2 + s2 = 1 and c2|δ1|2 + s2|δ2|2 = |rk|2.(3.6)

With these identities, the validity of (3.3) follows by direct computation. By the
choice of p and q, we have

|δ2| ≤ |rk| ≤ |δ1|.(3.7)

If |δ1| 6= |δ2|, it follows from (3.7) that c and s are real nonnegative scalars. It can be
checked that the 2 by 2 matrices in (3.3) associated with G1 and G∗

2 are both unitary.
Consequently, both G1 and G2 are unitary. We define

R(k+1) = (ΠG2)
∗R(k)(ΠG1) = Q∗

kR
(k)Pk,
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RΠ*Π
)k(

R

kColumn

0

X

0

0

X

X

(

kRow

2 1Π G*G *Π
)k

X

00X

00

X

X

X

X

X

XX

X

X

X

XX

X

0X

00

X

X

X

XX

X

X

X

XX

X

0

X

Fig. 3.1. The operation displayed in (3.3)

where Qk = ΠG2 and Pk = ΠG1. By (3.3) and Figure 3.1, R(k+1) has properties
(a) and (b) for L = k + 1. Now consider property (c).

We write a ∼ b if a and b are equal after a suitable reordering of the compo-
nents. Let a, b, a+, and b+ be vectors whose components are ordered in decreasing
magnitude, and which satisfy

a ∼ rk:K , b ∼ r
(k)
k:K , a+ ∼ rk+1:K , and b+ ∼ r

(k+1)
k+1:K .(3.8)

Thus ai is the i-th largest (in magnitude) component of rk:K . By the induction
hypothesis, we have a ¹ b. To establish (c), we need to show that a+ ¹ b+. Let the
index s be chosen so that as = rk, and let the index t be chosen so that

|bt| ≥ |rk| ≥ |bt+1|.(3.9)

By the definition of p and q, r
(k)
pp = bt and r

(k)
qq = bt+1. As seen in (3.8), a+ is

obtained from a by deleting as = rk. The vector r(k+1) is obtained from r(k) by a
unitary transformation that changes the value of two elements. In particular, b+ is
obtained from b by replacing the adjacent pair bt and bt+1 by

y =
btbt+1rk

|rk|2
.

By (3.9) |bt| ≥ |y| ≥ |bt+1|. Consequently,

b+t = y.(3.10)

We partition the proof of (c) into 2 cases.
Case 1: s ≤ t. Since a+

i ≤ ai for all i, a ¹ b, and bi = b+i for 1 ≤ i < t, we have

a+
1:t−1 ≺ a1:t−1 ≺ b1:t−1 = b+

1:t−1.(3.11)

For j > t ≥ s, it follows from the induction hypothesis and the connection between a
and a+ that

|rk|
j−1∏

i=1

|a+
i | = |as|

j−1∏

i=1

|a+
i | =

j∏

i=1

|ai| ≤
j∏

i=1

|bi|.(3.12)
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Since G1 and G2 are unitary, the determinant of (3.3) gives

|δ1δ2| = |r(k)
p r(k)

q | = |btbt+1| = |rky| = |rkb
+
t |,(3.13)

where the last equality in (3.13) comes from (3.10). Hence, for j > t, it follows that

j∏

i=1

|bi| = |bt||bt+1|
(

t−1∏

i=1

|bi|
)(

j∏

i=t+2

|bi|
)

= |rk||b+t |
(

t−1∏

i=1

|b+i |
)(

j−1∏

i=t+1

|b+i |
)

= |rk|
j−1∏

i=1

|b+i |.(3.14)

Combining (3.11), (3.12), and (3.14), we have a+ ¹ b+.
Case 2: s > t. As before, (3.11) holds. For t < j < s, we have

j∏

i=1

|a+
i | =

j∏

i=1

|ai| ≤
j∏

i=1

|bi| = |rk|
j−1∏

i=1

|b+i |,

where the first equality comes from the relation j < s, the middle inequality is the
induction hypothesis, and the last equality is (3.14). Rearranging this gives

( |aj |
|rk|

) j−1∏

i=1

|a+
i | ≤

j−1∏

i=1

|b+i |.(3.15)

Since |aj |/|rk| = |aj |/|as| ≥ 1 when j < s, we deduce from (3.15) that

a+
1:j−1 ≺ b+

1:j−1

when j < s. This also holds for j ≥ s due to (3.12) and (3.14). This completes the
proof of (c).

Hence, there exists an upper triangular matrix R(K), with r1:K−1 occupying the
first K − 1 diagonal elements, and unitary matrices Qi and Pi, i = 1, 2, . . . ,K − 1,
such that

R(K) = (Q∗
k−1 . . .Q

∗
2Q

∗
1)Σ(P1P2 . . .Pk−1).(3.16)

Equating determinants in (3.16) and utilizing the identity r
(k)
i = ri for 1 ≤ i ≤ K−1,

we have

K∏

i=1

|r(K)
i | = |r(K)

K |
|rK |

(
K∏

i=1

|ri|
)

=
K∏

i=1

σi =
K∏

i=1

|ri|,

where the last equality is due to the assumption r ¹ σ. It follows that |r(K)
K | = |rK |.

Let C be the diagonal matrix obtained by replacing the (K,K) element of the identity

matrix by r
(K)
K /rK . The matrix C is unitary since |rk|/|r(K)

K | = 1. The matrix

R = C∗R(K)(3.17)

has diagonal equal to r due to the choice of C.
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Combining (3.16) and (3.17) with the singular value decomposition H = VΣW∗

gives

H = VQ1Q2 . . .Qk−1CRP
∗
k−1 . . .P

∗
2P

∗
1W

∗.

Hence, we have obtained the GTD with

Q = V

(
K−1∏

i=1

Qi

)
C and P =W

(
K−1∏

i=1

Pi

)
.

Finally, note that if r is real, then G1 and G2 are real, which implies R is real.
We summarize the steps of the GTD algorithm as follows. To make it easier

to distinguish between the elements of the matrix R and the elements of the given
diagonal vector r, we use Rij to denote the (i, j) element of R and ri to denote the
i-th element of r.

1. Let H = VΣW∗ be the singular value decomposition of H, and suppose we
are given r ∈ CK with r ¹ σ. Initialize Q = V, P =W, R = Σ, and k = 1.

2. Let p and q be defined as follows:

p = arg min
i
{|Rii| : k ≤ i ≤ K, |Rii| ≥ |rk|},

q = arg max
i
{|Rii| : k ≤ i ≤ K, |Rii| ≤ |rk|, i 6= p}.

In R, P, and Q, perform the following exchanges:

(Rkk, Rk+1,k+1)↔ (Rpp, Rqq)

(R1:k−1,k,R1:k−1,k+1)↔ (R1:k−1,p,R1:k−1,q)

(P:,k,P:,k+1)↔ (P:,p,P:,q)

(Q:,k,Q:,k+1)↔ (Q:,p,Q:,q)

3. Construct the matrices G1 and G2 shown in (3.3). Replace R by G∗
2RG1,

replace Q by QG2, and replace P by PG1.
4. If k = K − 1, then go to step 5. Otherwise, replace k by k+1 and go to step

2.
5. Multiply column K of Q by RKK/rK ; replace RKK by rK . The product

QRP∗ is the GTD of H based on r.
The numerical stability of this algorithm is analyzed in Section 5. In particular,

the division by the possibly small denominator in (3.4) is safe, and the algorithm is
stable. A MATLAB implementation of our GTD algorithm appears in the Appendix.
Given the SVD, this algorithm for the GTD requires O((m + n)K) flops. For com-
parison, reduction of H to bidiagonal form by the Golub-Kahan bidiagonalization
scheme [8] (also see [9, 10, 26, 28]), often the first step in the computation of the
SVD, requires O(mnK) flops.

4. The GTD update. In this section, we give the rationale behind the GTD
update (3.3). The prescribed diagonal element rk satisfies the relation |δ1| ≥ |rk| ≥
|δ2|. The first column of G1 is chosen so that the vector

p =

[
δ1 0
0 δ2

] [
c
s

]

10



has length equal to |rk|. When c = 1, p has length |δ1|, and when s = 1, p has
length |δ2|. Hence, as (c, s) travels along the unit circle from (1, 0) to (0, 1), there
exist a point where the length of p is |rk|. The second column of G1 is chosen to be
orthogonal to the first column of G1. The second column of G2 is also chosen to be
orthogonal to p, while the first column of G2 is orthogonal to the second column of
G2. Since the second column of G2 is perpendicular to p, the (k + 1, k) element of
R(k+1) is 0. Since multiplication by G2 preserves length, the (k, k) element of R(k+1)

has length |rk|. Finally, we multiply G2 by a complex scalar of magnitude 1 in order
to make the (k, k) element of R(k+1) equal to rk.

In principle, the procedure outlined above could be applied to the entire matrix,
rather than to the diagonal matrix in the SVD. That is, we first construct a unit
vector p1 ∈ Cn such that ‖Hp1‖ = |r1|. Let P1 be a unitary matrix with first column
p1. The matrix P1 can be expressed in terms of a Householder reflection [10, p. 210].
Let Q1 be a unitary matrix with first column (r1/|r1|2)Hp1. For these matrices, we
have

Q∗
1H1P1 =

[
r1 z2

0 H2

]
,

where H1 = H, z2 ∈ Cn−1, and H2 ∈ C(m−1)×(n−1).
The reduction to triangular form would continue in this same way; after k − 1

steps, we have

(

k−1∏

j=1

Qj)
∗Σ(

k−1∏

j=1

Pj) =

[
Rk Zk

0 Hk

]
,(4.1)

where Rk is a k by k upper triangular matrix with r1, r2, . . ., rk on the diagonal, Qj

and Pj are unitary, and 0 denotes a matrix whose entries are all 0. In the next step,
we take

Pk =

[
Ik 0
0 P̄

]
and Qk =

[
Ik 0
0 Q̄

]
,(4.2)

where Ik is a k by k identity matrix. The first column p̄ of P̄ is chosen so that
‖Hkp̄‖ = |rk+1|, while the first column of Q̄ is (rk+1/|rk+1|2)Hkp̄.

The vector p̄ may be generated by a Lanczos’ process (see [8] or [22, Chap. 13]).
That is, we first compute unit vectors v1 and v2 such that

‖Hkv1‖ ≥ |rk+1| ≥ ‖Hkv2‖.(4.3)

Let v(θ) be the vector obtained by rotating v1 through an angle θ towards v2. By
continuity of the norm, there exists a value of θ such that ‖Hkv(θ)‖ = |rk+1|. For the
GMD, where all the elements of r equal the geometric mean of the positive singular
values ofH, we establish in [16] the existence of vectors v1 and v2 satisfying (4.3). For
a general r satisfying r ¹ σ, the existence (or nonexistence) of v1 and v2 satisfying
(4.3) is an open problem. Hence, the algorithm in (4.1)–(4.3) is conceptual in the
sense that the existence of v1 and v2 satisfying (4.3) has only been established for
the GMD.

5. The GTD algorithm with inexact arithmetic. The numerical stability
of the GTD algorithm (the 5 steps summarized at the end of Section 3) hinges on
the computation of the product (3.3), where c and s are given in (3.4). When δ1
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and δ2 are close together, there is a large relative error in the evaluation of c in finite
precision floating point arithmetic (see [10, Sect. 1-4]). In this section, we show that
these large errors in the evaluation of c and s are harmless.

Following the notation in [12], we put a hat over a quantity to denote its computed,
numerical value (a floating point number), and we let u denote the “unit roundoff”
(or machine epsilon). Typically, u is on the order of 10−8 or 10−16 in single or
double precision respectively. We assume that floating point arithmetic is performed
in accordance with IEEE standard 754 [1]. Some implications of this, which are used
in our analysis, are the following:

F1. With floating point arithmetic, the floating point value of C = x̂ op ŷ, where
op denotes either +,−,×, or ÷, should satisfy Ĉ = C(1 + ε) where |ε| ≤ u.

F2. The floating point value of C =
√
x̂ should satisfy Ĉ = C(1+ε) where |ε| ≤ u.

In this section, let G1 and G2 denote the 2 by 2 matrices depicted in (3.3). The

floating point versions Ĝ1 and Ĝ2 of these matrices are obtained as follows: First, the
floating point representation ĉ of c is formed by substituting floating point numbers
δ1, δ2, and rk in (3.4) and performing floating point arithmetic. Then ĉ is inserted in
the equation for s in (3.4) to obtain the floating point value ŝ. Finally, the floating
point numbers ĉ and ŝ, along with floating point arithmetic, are used to construct the
matrices Ĝ1 and Ĝ2 in (3.3).

Our main result in this section concerns how close the matrices Ĝ1 and Ĝ2 are to
unitary matrices, and how close the numerical version of the identity (3.3) agrees with
the exact version. Our analysis uses the following notation: If g(u) is a scalar-valued
function of the unit roundoff and M > 0 is a scalar, then we write g(u) = O(Mu) if

lim sup
u→0

|g(u)|
Mu

≤ 1.

If z = x+ yi is a complex, floating point number, then by (F1), we have

fl(|z|2) = fl(x2 + y2) = (x2(1 + ε1) + y2(1 + ε2))(1 + ε3),

where fl(·) stands for floating pointing representation, and |εi| ≤ u for i = 1, 2, 3.
The (1+ ε1) and (1+ ε2) factors are due to the error in the floating point squaring of
x and y. The (1+ ε3) factor is due to the floating point addition operation. It follows
that

fl(|z|2) = |z|2(1 +O(2u)).(5.1)

Let f2
r , f

2
1 , and f2

2 denote the floating point representations of |rk|2, |δ1|2, and |δ2|2
respectively.

Lemma 5.1. If f2
1 ≥ f2

r ≥ f2
2 , f

2
1 6= f2

2 , and the floating point arithmetic satisfies

(F1) and (F2), then we have

ĉ2 + ŝ2 = 1 +O(4u), and(5.2)

ĉ2 =

(
f2

r − f2
2

f2
1 − f2

2

)
(1 +O(5u)).(5.3)

Proof. Since f2
1 ≥ f2

r ≥ f2
2 , it follows that

0 ≤ ĉ ≤ 1.(5.4)

12



We apply (F1) and (F2) to obtain

ŝ = fl
(
1− ĉ2

)1/2
=
(
(1− ĉ2(1 + ε1))(1 + ε2)

)1/2
(1 + ε3),(5.5)

where |εi| ≤ u for i = 1, 2, 3. The (1 + ε1) factor reflects the error in the squaring of
ĉ, the (1 + ε2) factor is due to the subtraction, and the (1 + ε3) factor is due to the
square root. Squaring (5.5) and utilizing (5.4), we see that

ŝ2 = 1− ĉ2 +O(4u),(5.6)

which establishes (5.2).
Now we consider the estimate (5.3). We have

ĉ = fl

(
f2

r − f2
2

f2
1 − f2

2

)1/2

=

(
f2

r − f2
2

f2
1 − f2

2

)1/2(
(1 + ε1)(1 + ε3)

(1 + ε2)

)1/2

(1 + ε4),(5.7)

where |εi| ≤ u for 1 ≤ i ≤ 4. The (1 + ε1) and (1 + ε2) factors are connected with the
subtractions, the (1+ε3) factor comes from the division of numerator by denominator,
and the (1 + ε4) factor comes from the square root. Squaring (5.7) yields (5.3).

Using Lemma 5.1, we show that the floating point matrices Ĝ1 and Ĝ2 are nearly
unitary.

Theorem 5.2. If f2
1 ≥ f2

r ≥ f2
2 , f

2
1 6= f2

2 , and the floating point arithmetic

satisfies (F1) and (F2), then we have

Ĝ1Ĝ
∗
1 =

[
1 +O(4u) 0

0 1 +O(4u)

]
and(5.8)

Ĝ2Ĝ
∗
2 =

[
1 +O(23u) 0

0 1 +O(23u)

]
.(5.9)

Proof. The identity (5.8) comes from (5.2). Now consider (5.9). By Lemma 3.5
in [12] and the fact that rk and δ1 are (in general) complex, we have

fl(rkδ
∗
1) = rkδ

∗
1(1 + 2

√
2ε1)

where |ε1| ≤ u. Thus

(Ĝ∗
2)11 = fl

(
rkδ

∗
1c

|rk|2
)

=

(
rkδ

∗
1 ĉ

f2
r

)
(1 + 2

√
2ε1)(1 + ε2)(1 + ε3),(5.10)

where the (1 + ε2) factor is due to the multiplication by the scalar ĉ and the (1 + ε3)
factor is due to the division by f 2

r . Taking the norm and squaring yields:

|(Ĝ∗
2)11|2 =

( |rk|2|δ1|2ĉ2
(f2

r )
2

)
(1 +O(10u)),

since 2
√
2 ≤ 3. Using (5.1), we substitute |rk|2(1 + O(2u)) for one f2

r factor in the
denominator to obtain

|(Ĝ∗
2)11|2 =

( |δ1|2ĉ2
f2

r

)
(1 +O(12u)).
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Again, using (5.1), we replace |δ1|2 in the numerator by f2
1 (1 +O(2u)) to obtain

|(Ĝ∗
2)11|2 =

(
f2
1 ĉ

2

f2
r

)
(1 +O(14u)).

In the same fashion,

|(Ĝ∗
2)21|2 =

(
f2
2 ŝ

2

f2
r

)
(1 +O(14u)).

Hence, we have

(Ĝ2Ĝ
∗
2)11 =

(
1

f2
r

)(
f2
1 ĉ

2 + f2
2 ŝ

2
)
(1 +O(14u)).(5.11)

Let C2 and S2 be defined by

C2 =
f2

r − f2
2

f2
1 − f2

2

and S2 = 1− C2 =
f2
1 − f2

r

f2
1 − f2

2

.

Observe that

f2
1C

2 + f2
2S

2 = f2
r .(5.12)

By Lemma 5.1, we can write

ĉ2 = C2 + e, where e = O(5u)C2 = O(5u)

(
f2

r − f2
2

f2
1 − f2

2

)
.(5.13)

Also, by Lemma 5.1, we have

ŝ2 = S2 − e+O(4u).

These substitutions in (5.11) yield

(Ĝ2Ĝ
∗
2)11 =

(
1

f2
r

)(
f2
1 ĉ

2 + f2
2 ŝ

2
)
(1 +O(14u))

=

(
1

f2
r

)(
f2
1 (C

2 + e) + f2
2 (S

2 − e+O(4u)
)
(1 +O(14u))

=

(
1

f2
r

)(
f2
1C

2 + f2
2S

2 + (f2
1 − f2

2 )e+ f2
2O(4u)

)
(1 +O(14u))

=

[
1 +

(
f2
1 − f2

2

f2
r

)
e+O(4u)

]
(1 +O(14u))(5.14)

= [1 +O(5u) +O(4u)](1 +O(14u))(5.15)

= 1 +O(23u)).

In (5.14), we utilize the identity (5.12) and the assumption f 2
2 ≤ f2

r . In (5.15), we
also use the estimate (5.13) for e (established in Lemma 5.1).

Theorem 5.2 does not imply that Ĝi is close to Gi, i = 1, 2, it only states that
when the Gi are evaluated using floating point arithmetic, the resulting floating point
matrices are nearly unitary, even though the respective elements of Ĝi and Gi could
differ by as much as one. Next, we show that when these nearly unitary matrices are
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used to evaluate the product (3.3), the elements on the diagonal and the subdiagonal
of the product are relatively close to their correct values. We do not analyze the (1, 2)
(superdiagonal) element in the product since its value is not important (and in fact,
it value need not be close to the exact matrix element); what is important is that

Ĝ1 and Ĝ2 are nearly unitary and the computed product is nearly upper triangular,
with the diagonal elements and the subdiagonal element relatively close to the exact
elements.

Theorem 5.3. If f2
1 ≥ f2

r ≥ f2
2 , f

2
1 6= f2

2 , and the floating point arithmetic

satisfies (F1) and (F2), then with exact arithmetic, we have

Ĝ∗
2∆Ĝ1 =

[
rk(1 +O(16u)) ??
O(12u)|δ1| y(1 +O(11u))

]
,(5.16)

where

∆ =

[
δ1 0
0 δ2

]
,

and y = δ1δ2rk/|rk|2 is the exact (2, 2) element appearing in (3.5).

Proof. In (5.10) we give the (1, 1) element of Ĝ∗
2. The (1, 2) element has the same

form, but with c replaced by s and with δ1 replaced by δ2. It follows that

(Ĝ∗
2∆Ĝ1)11 =

(
rk|δ1|2ĉ2

f2
r

)
(1 + 2

√
2ε1)(1 + ε2)(1 + ε3)

+

(
rk|δ2|2ŝ2

f2
r

)
(1 + 2

√
2ε′1)(1 + ε′2)(1 + ε′3),

where |εi| ≤ u and |ε′i| ≤ u for i = 1, 2, 3. Hence, we have

(Ĝ∗
2∆Ĝ1)11 = rk

(
ĉ2|δ1|2 + ŝ2|δ2|2

f2
r

)
(1 +O(5u)).

We replace |δ1|2 and |δ2|2 by f2
1 (1 + O(2u)) and f2

2 (1 + O(2u)) respectively, using
(5.1), to obtain

(Ĝ∗
2∆Ĝ1)11 = rk

(
ĉ2f2

1 + ŝ2f2
2

f2
r

)
(1 +O(2u))(1 +O(5u))

= rk

(
ĉ2f2

1 + ŝ2f2
2

f2
r

)
(1 +O(7u)).(5.17)

In the proof of Theorem 5.2, in equation (5.15), we show that

ĉ2f2
1 + ŝ2f2

2

f2
r

= 1 +O(9u).

Combining this with (5.17) gives

(Ĝ∗
2∆Ĝ1)11 = rk(1 +O(9u))(1 +O(7u)) = rk(1 +O(16u)),

the (1, 1)-element in (5.16).
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The (2, 1) element can be expressed

(Ĝ∗
2∆Ĝ1)21 =

(
rkŝĉδ1δ2

f2
r

)
(1 + 2

√
2ε1)(1 + ε2)(1 + ε3)

−
(
rkŝĉδ1δ2

f2
r

)
(1 + 2

√
2ε′1)(1 + ε′2)(1 + ε′3)

Taking absolute values, we obtain

|(Ĝ∗
2∆Ĝ1)21| =

(
ŝĉ|rk||δ1||δ2|

f2
r

)
O(10u).

Using (5.1), we replace
√
f2

r by |rk|
√

(1 +O(2u)) and we replace |δ2| by
√
f2
2

√
1 +O(2u).

Since 0 ≤ ŝ, ĉ ≤ 1, we have

|(Ĝ∗
2∆Ĝ1)21| =

(
|δ1|
√
f2
2

√
1 +O(2u)√

f2
r

√
1 +O(2u)

)
O(10u).

Since f2
2 ≤ f2

r and
√

1 +O(2u) = 1 +O(u), it follows that

|(Ĝ∗
2∆Ĝ1)21| =

(
|δ1|
√
f2
2 (1 +O(u))√

f2
r (1 +O(u))

)
O(10u) = |δ1|O(12u).

In a similar fashion, the (2, 2) element can be expressed:

(Ĝ∗
2∆Ĝ1)22 =

(
rkδ1δ2
f2

r

)
(ŝ2 + ĉ2)(1 +O(5u)).

Substituting for ŝ2 + ĉ2 using (5.2) and substituting for f 2
r using (5.1), we obtain

(Ĝ∗
2∆Ĝ1)22 =

(
rkδ1δ2

|rk|2(1 +O(2u))

)
(1 +O(4u))(1 +O(5u))

=

(
rkδ1δ2
|rk|2

)
(1 +O(11u)).

In our implementation of the GTD algorithm, we do not use floating point arith-
metic to evaluate the product Ĝ∗

2∆Ĝ1, rather we insert rk and y on the diagonal of
the product, and 0 on the subdiagonal. Theorem 5.3 shows that if we compute the
product Ĝ∗

2∆Ĝ1 with exact arithmetic, then the diagonal and subdiagonal elements
are close to rk, y, and 0.

In our analysis of the key step (3.3) in the GTD algorithm, it was assumed that
f2
1 ≥ f2

r ≥ f2
2 . On the other hand, due to the error terms in (5.16), there may not

exist an index p satisfying (3.1) or there may not exist an index q satisfying (3.2). In
the MATLAB code appearing in the Appendix, we handle these cases in the following
ways:

• If we cannot find an index p satisfying (3.1), then we set

p = arg max
i
{|r̂(k)

i | : k ≤ i ≤ K}.(5.18)
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• If we cannot find an index q satisfying (3.2), then we set

p = arg min
i
{|r̂(k)

i | : k ≤ i ≤ K}.(5.19)

In either case, the following exchanges are performed:

Rkk ↔ Rpp

R1:k−1,k ↔ R1:k−1,p

P:,k ↔ P:,p

Q:,k ↔ Q:,p

We choose G1 = I, while G∗
2 is the identity matrix with the k-th diagonal element

replaced by (rk/|rk|)(δ∗1/|δ1|).
The motivation for these choices is the following: If the index p in (3.1) does not

exist, then the maximum in (5.18) must be very close to rk. A symmetric permutation
is performed to move the absolute largest diagonal element to the (k, k) position. The
k-th diagonal element of G∗

2 is chosen to have unit magnitude; its complex argument
is chosen so that its product with δ1 is a positive multiple of rk, the desired k-th
diagonal element of R. When the index q in (3.2) does not exist, then the minimum
in (5.19) must be very close to rk. The choice of G1 and G2 is the same as before.

6. Inverse eigenvalue problems. In [4] Chu presents a recursive procedure for
constructing matrices with prescribed eigenvalues and singular values. His algorithm,
which he calls svd eig, is based on Horn’s divide and conquer proof of the sufficiency
of Weyl’s product inequalities. In general, the output of svd eig is not upper trian-
gular. Consequently, this routine could not be used to generate the GTD. Chu notes
that to achieve an upper triangular matrix would require an algorithm “one order
more expensive than the divide-and-conquer algorithm.”

Given a vector of singular values σ ∈ Rn and a vector of eigenvalues λ ∈ Cn, with
λ ¹ σ, we can use the GTD to generate a matrix R with λ on the diagonal and with
singular values σ. In this section, we compare the solution to the inverse eigenvalue
problem provided by the GTD to Chu’s algorithm. In our initial experimentation, we
discovered that the algorithm of Chu, as presented in [4], did not work. When this
was pointed out, Chu provided an adjustment in which the parameter µ in [4, (2.2)]
was replaced by µλ1/|λ1|. With this adjustment, it was possible to solve 4 by 4 and
5 by 5 test cases that previously caused failure. The results reported in this section
use the adjusted algorithm.

Both MATLAB routines gtd (see Appendix) and svd eig [4] require O(n2) flops,
so in an asymptotic sense, the approaches are equivalent. In Table 6.1 we compare
the actual running times of gtd and svd eig for matrices of various dimensions.
These computer runs were performed on a Sun Workstation with 1 GB memory. In
making these runs, the portion of the GTD code connected with the updating of
the matrices P and Q was deleted since svd eig does not accumulate the unitary
matrices. The input arrays σ and λ were generated in the following way: Using the
MATLAB routine rand, we randomly generated a square matrix whose element lie
between 0 and 1. The singular values σ were computed using the MATLAB routine
svd and the eigenvalues λ were computed using MATLAB’s eig. By the theorem of
Weyl [27], λ ¹ σ. We then used both svd eig and gtd to generate matrices with the
specified singular values and eigenvalues. Five different matrices of each dimension
were generated and the average running time is reported in Table 6.1.
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Time σ error λ error
Dimension svd eig gtd svd eig gtd svd eig gtd

100 0.61 0.20 1.9e−16 2.0e−16 6.6e−16 0
200 2.24 0.38 2.0e−16 1.7e−16 5.9e−15 0
400 13.84 0.86 3.4e−16 1.8e−16 1.7e−15 0
800 97.50 2.30 2.5e−16 1.8e−16 3.7e−13 0

1200 317.83 5.67 1.8e−16 2.1e−16 2.5e−12 0
1600 746.77 10.77 4.0e−16 1.8e−16 9.6e−7 0

Table 6.1

Comparison of svd eig and gtd for inverse eigenvalue problems (CPU time in seconds, relative
errors in singular values and eigenvalues in sup-norm)

The times shown in Table 6.1 indicate that gtd becomes increasingly more effi-
cient than svd eig as the matrix dimension increases. For a dimension of 100, gtd

is about three times faster than svd eig. For a dimension of 1600, gtd is about 70
times faster than svd eig.

In Table 6.1 we also compare the specified singular values and eigenvalues to those
obtained by applying MATLAB’s svd and eig routines to the generated matrices.
That is, for each matrix output by either svd eig or gtd, we use MATLAB’s routines
to compute the singular values and eigenvalues. The relative difference between the
singular values and eigenvalues generated by MATLAB’s routines and the specified
singular values and eigenvalues is evaluated in the sup-norm. The errors reported
in Table 6.1 are the average errors for the 5 random matrices of each dimension.
Both routines generate matrices with singular values that match those computed by
MATLAB’s svd routine to within 16 digits. Observe that gtd always matches exactly
the prescribed eigenvalues since the generated matrix is triangular, with the specified
eigenvalues on the diagonal. The error in the eigenvalues of the matrix generated
by svd eig was comparable to the singular value error for matrices of dimension
up to 400. Thereafter, the error in the eigenvalues grew quickly. When the matrix
dimension doubled from 400 to 800, the error increased roughly by the factor 102.
And when the matrix dimension doubled again from 800 to 1600, the error increased
roughly by the factor 105.

A recursive algorithm can require a significant amount of memory. While svd eig

executed, we monitored the memory usage with the Unix “top” command. We ob-
served that for a matrix of dimension 1600, the memory consumption grew to 319
MB. Since a complex double precision matrix of dimension 1600 occupies about 41
MB memory, the recursion required more than 7 times as much space as the matrix
itself.

7. Conclusions. By the theorem of Weyl [27], the generalized triangular de-
composition represents the most general unitary decomposition H = QRP∗. That
is, the diagonal r of R must satisfy r ¹ σ, where σ is the vector of singular values
for H, while for any diagonal r with r ¹ σ, we can write H = QRP∗. The GTD
includes, as special cases, the singular value decomposition, the Schur decomposition,
the QR decomposition, and the geometric mean decomposition. Given the SVD, the
GTD based on r can be evaluated using a series of Givens rotations and permuta-
tions. The GTD algorithm provides a new proof of Horn’s theorem [13]. Applications
of the GTD include transceiver design for MIMO communications [17, 18, 19] and
inverse eigenvalue problems, surveyed extensively in [3]. With the GTD, we are able
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to consider all possible diagonals for R in the factorization QRP∗ when designing
an optimal transceiver; in contrast, the SVD, the QR decomposition, and the Schur
decomposition all correspond to special choices for R. In terms of CPU time and
memory requirements, GTD is superior to a recursive approach for generating ma-
trices with specified singular values and eigenvalues. GTD is backed by a rigorous
numerical stability theory developed in Section 5.

Acknowledgements. In the MATLAB code appearing in the appendix, the
elegant block of code for checking the multiplicative majorization conditions was sug-
gested by a referee.

8. Appendix: MATLAB implementation of GTD.

% MATLAB implementation of the "Generalized Tridiagonal Decomposition"

%

% Input:

%

% H = U*S*V’ (singular value decomposition of H)

% U and V orthonormal columns,

% S diagonal matrix with positive diagonal entries

% r desired diagonal of R

% --length (r) = nnz (S)

% --r multiplicatively majorized by diag (S)

% --product r = product diag (S)

%

% Output:

%

% H = Q*R*P’ (GTD based on r)

% P and Q orthonormal columns

% R upper triangular, R (i, i) = r (i)

%

function [Q, R, P] = gtd (U, S, V, r)

d = diag (S) ;

if any (d <= 0)

error (’a diagonal element of S is <= 0’) ;

end

K = length (d) ;

% Check if r satisfies the multiplicative majorization condition

cr = cumprod (flipud (sort (abs (r (:))))) ;

cd = cumprod (flipud (sort (d))) ;

if any (cr (1:K-1)./cd (1:K-1) - 1 > 10*K*eps) | abs (cr(K)-cd(K))/cd(K) > 10*K*eps

error(’r is not multiplicatively majorized by diag (S)’) ;

end

P = V ;

Q = U ;

R = zeros (K) ;
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for k = 1 : K-1

rk = r (k) ;

abs rk = abs (rk) ;

kp1 = k + 1 ;

km1 = k - 1 ;

I = find (abs (d (k : K)) > abs rk) ;

if ( isempty (I) )

[x, p] = max (abs (d (k : K))) ;

p = p + km1 ;

d ([k p]) = d ([p k]) ;

else

I = I + km1 ;

[x, p] = min (abs (d (I))) ;

p = I (p) ;

d ([k p]) = d ([p k]) ;

I = find (abs (d (kp1: K)) <= abs rk) ;

if ( isempty (I) )

d ([p k]) = d ([k p]) ;

[x, p] = min (abs (d (k : K))) ;

p = p + km1 ;

d ([p k]) = d ([k p]) ;

else

I = I + k ;

[x, q] = max (abs (d (I))) ;

q = I (q) ;

delta2 = d (q) ;

end

end

delta1 = d (k) ;

if ( isempty (I) )

R (1:km1, [k p]) = R (1:km1, [p k]) ;

R (k, k) = rk ;

P (:, [k p]) = P (:, [p k]) ;

Q (:, [k p]) = Q (:, [p k]) ;

t = rk’*delta1/(abs (rk)*abs (delta1)) ;

Q (:, k) = Q (:, k)*t ;

continue ;

end

d ([kp1 q]) = d ([q kp1]) ;

sq delta1 = abs (delta1)̂ 2 ;

sq delta2 = abs (delta2)̂ 2 ;

sq rk = abs rk̂2 ;

denom = sq delta1 - sq delta2 ;

c = sqrt ((sq rk - sq delta2)/denom) ;

s = sqrt (1-c*c) ;

x = -s*c*rk*denom/sq rk ;

y = delta2*((delta1*rk)/sq rk) ;

G1 = [ c -s

s c ] ;
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G2 = [ c*delta1 -s*(delta2’)

s*delta2 c*(delta1’) ] ;

G2 = ( (rk’)/sq rk) * G2 ;

if ( k > 1 )

% permute the columns

R (1:km1, [k p]) = R (1:km1, [p k]) ;

R (1:km1, [kp1 q]) = R (1:km1, [q kp1]) ;

% apply G1 to R

R (1:km1, [k kp1]) = R (1:km1, [k kp1])*G1 ;

end

R (k, k) = rk ;

R (k, kp1) = x ;

d (kp1) = y ;

% permute the columns

P (:, [k p]) = P (:, [p k]) ;

P (:, [kp1 q]) = P (:, [q kp1]) ;

Q (:, [k p]) = Q (:, [p k]) ;

Q (:, [kp1 q]) = Q (:, [q kp1]) ;

% apply G1 to P

P (:, [k kp1]) = P (:, [k kp1])*G1 ;

% apply G2 to Q

Q (:, [k kp1]) = Q (:, [k kp1])*G2 ;

end

R (K, K) = r (K) ;

if ( r (K) ∼= 0. )

Q (:, K) = Q (:, K)*d (K)/ r (K) ;

end

P = P (:, 1:K) ;

Q = Q (:, 1:K) ;
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