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Abstract—The amplitude estimation of a signal that is known
only up to an unknown scaling factor, with interference and noise
present, is of interest in several applications, including using the
emerging quadrupole resonance (QR) technology for explosive de-
tection. In such applications, a sensor array is often deployed for
interference suppression. This paper considers the complex ampli-
tude estimation of a known waveform signal whose array response
is also known a priori. Two approaches, viz., the Capon and the
maximum likelihood (ML) methods, are considered for the signal
amplitude estimation in the presence of temporally white but spa-
tially colored interference and noise. We derive closed-form expres-
sions for the expected values and mean-squared errors (MSEs) of
the two estimators. A comparative study shows that the ML es-
timate is unbiased, whereas the Capon estimate is biased down-
wards for finite data sample lengths. We show that both methods
are asymptotically statistically efficient when the number of data
samples is large but not when the signal-to-noise ratio (SNR) is
high. Furthermore, we consider a more general scenario where
the interference and noise are both spatially and temporally cor-
related. We model the interference and noise vector as a multi-
channel autoregressive (AR) random process. An alternating least
squares (ALS) method for parameter estimation is presented. We
show that in most cases, the ALS method is superior to the model-
mismatched ML (M3

L) method, which ignores the temporal cor-
relation of the interference and noise.

Index Terms—Asymptotic analysis, capon, interference suppres-
sion, maximum likelihood, multichannel autoregressive random
process, parameter estimation, quadrupole resonance.

I. INTRODUCTION

E STIMATING the signal parameters in the presence of in-
terference and noise via array processing is often encoun-

tered in practical applications (see, e.g., [1], [2], and the refer-
ences therein). It is well known that temporal information about
the signal can be utilized to effectively suppress the interfer-
ence and noise and, hence, to significantly improve the estima-
tion accuracy. For example, [3] and [4] have studied the esti-
mation of directions of arrival (DOAs) of signals with known
waveforms and showed that significant improvements in accu-
racy, interference suppression capability, and spatial resolution
can be obtained. Through Cramér–Rao bound (CRB) analysis,
[5] has studied the DOA estimation of a parametric signal and

Manuscript received August 30, 2002; revised March 19, 2003. This work
was supported in part by the National Science Foundation under Grant CCR-
0104887 and the Swedish Science Council. The associate editor coordinating
the review of this paper and approving it for publication was Dr. Alex B. Ger-
shman.

Y. Jiang and J. Li are with the Department of Electrical and Computer
Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail:
yjiang@dsp.ufl.edu; li@dsp.ufl.edu).

P. Stoica is with the Department of Systems and Control, Uppsala University,
Uppsala, Sweden (e-mail: ps@syscon.uu.se).

Digital Object Identifier 10.1109/TSP.2003.820074

0 200 400 600 800 1000 1200 1400 1600
--0.8

--0.6

--0.4

--0.2

0

0.2

0.4

0.6

0.8

1

exp(-- t/T
2
) 

exp(-- t/T
2
* ) 

T
e
 

Fig. 1. QR response of N in the TNT.

shown that exploiting temporal information about the signal can
improve the DOA estimation. Additional work dealing with the
estimation of the parameters of known waveform signals can be
found in [6]–[10].

All of the aforementioned papers concentrate on the estima-
tion of signal parameters by exploiting the temporal informa-
tion only. Exploiting both the temporal and spatial information
on the signal for interference suppression and signal parameter
estimation has yet to be fully investigated in the previous litera-
ture, yet it is of practical importance in some applications, such
as using the emerging quadrupole resonance (QR) technology
for explosive detection [11], [12]. With reference to the QR ap-
plication, the in the TNT, when stimulated by a sequence
of pulses, gives a characteristic response specific to the TNT
consisting of a sequence of echoes. We refer to this response as
the QR signal. Each echo of the QR signal is a back-to-back ex-
ponentially damped sinusoid separated by an interval from
the adjacent echoes and with a damping rate determined by a
parameter (see Fig. 1). The echo amplitude also damps ex-
ponentially as . The QR signal frequency and are
all known quite accurately a priori, and the precise echo timing

is also available in practice. Hence, the QR signal is a priori
known to within a multiplicative constant. The major challenge
of using the QR technology for landmine detection is that the
QR signal frequency falls within the frequency band for the
AM/FM radio signals, and the QR signal frequency cannot be
changed. To suppress the radio interferences, an antenna array
can be deployed with one of the sensors receiving the QR signal
as well as the interference and noise (we refer to it as the main
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antenna), whereas the remaining sensors receive the interfer-
ence and noise only (we refer to them as the reference antennas).
Hence, one of the elements of the array steering vector for the
QR signal is equal to one, and the remaining elements are zero.
Thus, in this application, both temporal and spatial information
are available a priori.

Motivated by the QR application, we study herein the
problem of amplitude estimation of a signal with known
waveform and steering vector since it is a mandatory step
for detection. We consider two approaches [the Capon and
the maximum likelihood (ML) methods] that utilize both the
temporal and spatial information on the signal for amplitude
estimation in the presence of temporally white but spatially
colored interference and noise. Based on the results in [13]
and [14], we derive closed-form expressions for the expected
values and mean-squared errors (MSEs) of the two estimators.
A comparative study shows that the ML estimate is unbiased,
whereas the Capon estimate is biased downwards for finite
data sample lengths. We also show that both methods approach
the corresponding Cramér–Rao bound (CRB), i.e., they are
asymptotically statistically efficient, when the number of
data samples is large. However, they are not asymptotically
statistically efficient when the signal-to-noise ratio (SNR)
is high. Furthermore, we consider a more general scenario
where the interference and noise vectors are both spatially
and temporally correlated. We model the interference and
noise vector as a multichannel autoregressive (AR) random
process. An alternating least squares (ALS) method is proposed
to tackle the amplitude estimation problem in this situation.
We show that in most cases, the ALS method is superior to
the model-mismatched ML ( ) method that ignores the
temporal correlation of the interference and noise. Finally,
numerical examples are presented to illustrate the theoretical
properties and demonstrate the practical performance of the
estimators.

The remainder of the paper is organized as follows. Sec-
tion II formulates the problem of interest. The ML and Capon
estimators are also given in that section. Section III gives the
closed-form expressions of the expected values and MSEs
of the ML and Capon estimators and compares their statis-
tical properties. In Section IV, we propose an alternating least
squares (ALS) method to deal with the more general scenario of
both spatially and temporally correlated interference and noise.
Our theoretical findings are verified via numerical examples in
Section V. Finally, Section VI gives our conclusions.

II. PRELIMINARIES

We consider the problem of estimating the complex ampli-
tude of a known waveform signal in the presence of interference
and noise:

(1)

where , denotes the th array output
vector (where is the number of sensors and is the number
of snapshots), the array steering vector of the signal
of interest is known, and is the unknown complex ampli-
tude of the signal whose temporal waveform is known.

First, we model the interference and noise term
as a zero-mean temporally white but spatially colored circularly
symmetric complex Gaussian random process with an unknown
and arbitrary, but fixed, spatial covariance matrix . We define
the SNR by lumping the interference and noise together in a
“generalized noise” term:

SNR
tr

(2)

where tr denotes the trace of a matrix, and

(3)

is the average power of the known waveform. We will discuss
the extension to the case where the interference and noise term
is both temporally and spatially correlated in Section IV.

The Capon and ML estimators are two widely used methods
in array processing [2]. The Capon method [also known
as the minimum variance distortionless response (MVDR)
beamformer] estimates the signal amplitude via [15]

(4)

where

(5)

with denoting the conjugate transpose

(6)

and

(7)

It is easy to solve (5) and show that [2]

(8)

The ML method estimates the signal amplitude by maxi-
mizing the likelihood function of the random vectors .
We show in Appendix A that

(9)

where

(10)

Note that the only difference between the Capon and ML estima-
tors is that the matrix in (8) is replaced by in (9). We will
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show in the following sections that this seemingly minor dif-
ference in fact leads to significant and interesting performance
differences between the two estimators.

III. PERFORMANCE ANALYSIS OF ML AND CAPON

A. Performance Analysis of the ML Estimator

We present below a statistical performance analysis of the ML
estimator. We prove that the ML estimator is unbiased. By de-
riving the MSE of the ML estimate and comparing it with the
corresponding CRB, we show that the ML estimator is asymp-
totically statistically efficient when the number of snapshots is
large but, in addition, that this is not the case for high SNR.

1) Bias Analysis: The matrix defined in (10) and the
vector in (7) are both functions of the vectors ,
which might suggest that they are correlated with each other.
However, the lemma below somewhat surprisingly shows that
they are in fact statistically independent of each other.

Lemma 1: Under the assumption made on the data model in
(1), the vector and the matrix are statistically independent
of each other.

Proof: See Appendix B.
Utilizing this lemma and the conditional expectation rule, we

can easily show that the ML estimator is unbiased, i.e.,

(11)

where denotes calculating the expected value with re-
spect to for a fixed .

Lemma 1 and its proof will also be helpful in the performance
analyzes that follow.

2) Mean-Squared Error Analysis: Before calculating the
MSE of the ML estimate, we first introduce the best possible
performance bound for any unbiased estimator of , i.e., the
CRB. Appendix C shows that the CRB has the following
compact form:

CRB (12)

Note that

(13)

i.e., the error of the ML estimate of is

(14)

Hence, the MSE of the ML estimate is

MSE

(15)

(16)

To obtain (16) from (15), we have utilized the facts that
and are statistically independent of each other (see
Lemma 1) and that are independently and identically
distributed.

Let

(17)

According to (16) and (12)

MSE
CRB

(18)

As shown in the proof of Lemma 1

(19)

where are independently and iden-
tically distributed. Hence, has a complex Wishart distribution
[13], [14], [16], i.e., . In [13], the
probability density function (PDF) of has been pro-
vided:

for

(20)
Thus

(21)

(22)

Therefore, it follows from (18) and (22) that

MSE CRB (23)

The above equation shows that 1) the ML estimate is
asymptotically statistically efficient for large snapshot lengths

, which was expected, and 2) the ML estimate is not asymp-
totically statistically efficient for high SNR values when
is fixed. In fact, we can infer from (23) that the MSE (in
decibels)-versus-SNR (in decibels) line is parallel to the
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CRB-versus-SNR line, and thus, there is no “threshold effect”
at low SNR. This theoretical result is verified via a numerical
example in Section V.

B. Performance Analysis of the Capon Estimator

We now establish the theoretical properties of the Capon esti-
mator via an analysis that parallels the one in Section III-A. Our
analysis relies on the results in [13], [14], and [17].

1) Bias Analysis: We have proved that the ML estimate
is unbiased. We investigate the bias of the Capon estimate by
studying the relationship between the two estimators.

Lemma 2: Under the assumptions made on the data model in
(1), we have

(24)

where

(25)

and the equality holds iff for some constant .
Proof: See Appendix D.

Lemma 3: Under the assumption made on the data model in
(1), any polynomial function of the defined in (24) is uncor-
related with the ML estimate, i.e.,

where is an arbitrary polynomial.
Proof: See Appendix E.

Based on Lemmas 2 and 3, we have

(26)

We derive below the PDF of . Recall that
[cf. (126)] and . Following the tech-
niques used in [13] and [14], we define

(27)

and

(28)

Then, and [16].
Inserting (27) and (28) into (127) yields

(29)

where

(30)

We next introduce an unitary matrix such that

(31)

Note that and have the same PDFs as and ,
respectively. Then, (29) can be further simplified as

(32)

We partition , , and as

(33)

(34)

(35)

where , , and are scalars, ,
and are vectors, and both and are

matrices. Some useful relationships are as
follows [13], [14]:

(36)

(37)

(38)

(39)

To obtain (39) from (38), we have used the matrix inversion
lemma.

Based on the partitions defined in (33)–(35), (32) can be
written as

(40)

(41)

(42)

Hence, we have

(43)

where and , and they
are statistically independent of each other. It can been shown
(see the [14, App.]) that the PDF of is

for (44)

and the first and second moments of this distribution are

(45)

(46)

Thus, it follows from (45) and (26) that

(47)

The above equation shows that the Capon estimate of is bi-
ased downwards for a finite data sample number , whereas it
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is asymptotically unbiased for large . We can also see that the
biasedness of the Capon estimate is not related to SNR. We note
that the result in (47) is not completely new. In [18] and [19],
results similar to (47) when studying the convergence rate of
the Capon beamformer, which was used to estimate the signal
power and waveform, are given. However, our assumptions are
different from those in [18] and [19], where the signals were as-
sumed to be independently and identically distributed complex
Gaussian random vectors.

2) Mean-Squared Error Analysis: Based on Lemma 2, we
can obtain the MSE as

MSE

(48)

(49)

(50)

where to obtain (50) from (49), we have used Lemma 3 as well
as (11).

Combining (14) and (126) gives

(51)

Using the notations defined in (27) – (39), we can rewrite (51)
as

(52)

(53)

(54)

Thus

CRB (55)

CRB (56)

CRB (57)

CRB (58)

CRB (59)

We obtained (57) from (56) using the fact that

(60)

It follows from (45) and (46) that the second term of (50) is

(61)

(62)

TABLE I
M SENSORS, L SNAPSHOTS, AND SIGNAL AMPLITUDE �

Thus

MSE CRB (63)

We can conclude from (63) that the Capon estimate is asymptot-
ically statistically efficient for a large data sample number . In
the finite case, the MSE of the Capon estimate may be smaller
than the CRB for any unbiased estimator if the first term in (63)
dominates the second one. However, the MSE of the Capon es-
timate has an error floor equal to at
high SNR.

C. Summary of the Capon and ML Statistical Properties

• The ML estimate is unbiased.
• The ML estimate is asymptotically statistically efficient

for large number of snapshots.
• The ML estimate is not asymptotically statistically effi-

cient for high SNR.
• The Capon estimate is biased downwards.
• The Capon estimate is asymptotically unbiased and statis-

tically efficient for large number of snapshots.
• The Capon estimate is neither asymptotically unbiased

nor asymptotically statistically efficient for high SNR.
The above properties are summarized in Table I.

IV. EXTENSION TO MULTICHANNEL AR
INTERFERENCE AND NOISE

The previous study assumed that the interference and noise
term in (1) is spatially colored but temporally white, despite the
fact that the interference and noise can be temporally correlated
[1], [20]. In this section, we model the interference and noise
vector as a multichannel autoregressive (AR) random process
and propose an alternating least squares (ALS) method based on
the cyclic optimization approach [21]. For discussion purposes,
we refer to the ML method in Section II that ignores the tem-
poral correlation of the interference and noise as the model-mis-
matched ML ( ) method.

A. Data Model

Consider the data model:

(64)

which is the same as the one in (1), except that the interference
and noise term now satisfies the following AR equation [22]

(65)

where is the unit delay operator

(66)
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and

(67)

where denotes the Kronecker delta function:

(68)

Note that if the interference component in is a multichannel
AR process while the noise component in is white tempo-
rally, then the interference and noise term will be a multichannel
autoregressive and moving average (ARMA) random process,
which can still be approximated by a multichannel AR process.
The SNR for the data model in (64) is defined as

SNR
tr

(69)

where is the covariance matrix of .

B. ALS Algorithm

Conditioned on the first data vectors , the log-like-
lihood function is proportional to

tr

(70)

Maximizing the above function with respect to gives (see,
e.g., [23])

(71)

After substituting (71) into (70), we need to minimize

(72)

with respect to both and . Hence,
the optimization problem becomes more complicated than the
one in Section II. Here, we propose an alternating least squared
(ALS) approach to solve this problem.

To begin with, we obtain an initial estimate of by using
the method [cf. (9)]. For a given estimate , let

. From (72), we get

(73)

where

...

Note that

(74)

Hence, the solution to (73) is

(75)

which is recognized as the multichannel Prony estimate of
[22]. We assume that the order of the multichannel random

process AR is known. If is unknown, it can be estimated,
for instance, by using the generalized Akaike information
criterion (GAIC) [23].

For a given , we obtain an improved estimate of as fol-
lows:

(76)

First, we consider the case of a known damped (or undamped)
sinusoidal signal, i.e., with known frequency

and damping factor .
Let

Note that the length of the new data sequence
is instead of . The solution to the above problem

is given by the ML estimator proposed in Section II:

(77)

where

(78)
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and is the average power of the known
waveform . The ALS approach maximizes the likeli-
hood function cyclically. We set and obtain

. We then iterate the following two steps until the solu-
tion converges, i.e., until the two consecutive estimates and

are sufficiently close:

(79)

which is given by (75) with replaced by , and

(80)

which is given by (77) with replaced by .
Obviously, the likelihood function never decreases in any it-

eration. In the simulations reported in the next section, we found
that ALS converges in two or three iterations, although there is
no proof of convergence in general. Hence, the ALS estimator
is computationally quite efficient.

Next, we consider the case of an arbitrary known waveform
signal. Let

and

In addition, let be an orthogonal projection matrix defined as

(81)

where is the Moore–Penrose pseudo-inverse of [24],
and let .

Then, (76) can be written concisely in a matrix form:

(82)

(83)

(84)

(85)

Note that minimizing the cost function in (85) requires a two-
dimensional (2-D) search (since is complex-valued). To avoid
the search, we use Lemma 4 to obtain an approximate estimate
of .

Lemma 4: For a large data sample number , minimizing
is asymptotically

equivalent to minimizing

tr (86)

Proof: See Appendix F.
It follows from (86) that

tr tr

tr tr (87)
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Fig. 2. MSEs of �̂ and �̂ and the corresponding CRB versusLwhen
SNR = 10 dB.

Minimizing with respect to yields

tr

tr
(88)

where we remind the reader that . Because (88)
is only an approximate solution to (85) in this more general case,
ALS is not theoretically guaranteed to yield a more accurate so-
lution than the method. However, in our numerical exam-
ples, ALS outperforms in most cases, even for modest data
sample lengths. To avoid any “divergence problem” in this case
in which ALS is no longer an iterative maximizer, we simply
preimpose the number of iterations to be 3.

V. NUMERICAL AND EXPERIMENTAL EXAMPLES

We provide both simulated-data and real-life data examples
to demonstrate the performance the ML and Capon estimates.
In all the simulated-data examples, we consider the case where
the steering vector is given by and . This
corresponds to the case where the first of the sensors
receives the signal as well as the interference and noise, whereas
the other three sensors receive the interference and noise only. In
all but the last example, we assume that , ,
for simplicity. We obtain the empirical MSEs of the estimates
by using 500 Monte Carlo trials.

A. Spatially Colored but Temporally White Interference and
Noise

We first consider simulated-data examples. We assume that
the interference and noise term is a spatially colored but tempo-
rally white Gaussian random vector with the spatial covariance
matrix given by

(89)

where SNR.
Fig. 2 shows the MSEs of the Capon and ML estimates ob-

tained from both theoretical predictions [based on (23) and (63)]
and Monte Carlo trials as well as the corresponding CRB as a
function of when the SNR is 10 dB. As expected, both the
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ML and Capon estimates approach the corresponding CRB as
increases since both methods are asymptotically statistically

efficient for large . Fig. 3 gives the MSEs of the Capon and
ML estimates as well as the corresponding CRB as a function
of SNR when . Note the error floor of the Capon esti-
mate at high SNR due to its bias. Note also that the biased Capon
estimate can have lower MSE than the unbiased ML estimate at
low SNR (yet this happens at MSE values that are too large to
be of practical value). As predicted by our theoretical analyses,
for a fixed data length , MSE is parallel to the CRB,
and no “threshold effect” occurs. Furthermore, the ML estimate
is not asymptotically statistically efficient for high SNR.

Next, we present a real-life data example based on experi-
mentally measured QR data. The main antenna of a QR land-
mine detector receives a QR signal that consists of 40 echoes as
well as AM/FM interferences. We apply a fast Fourier transform
(FFT) to each echo and only pick the value corresponding to the
echo frequency . In this way, we compress the QR signal into
a signal with known waveform .
Next, the data received at the three reference antennas is seg-
mented into 40 blocks that occupy the same period of time as
the 40 echoes. We apply FFT to each block and pick three values
corresponding to and the two adjacent frequency bins. Doing
so, we get a virtual array with one main antenna and nine ref-
erence antennas, i.e., . Although the aforemen-
tioned preprocessing method might seem somewhat ad hoc, it
worked well in our experiments. Fig. 4 shows the ML and Capon
estimates of the QR signal amplitude in 30 experimental trials.
Since we do not know the true value of the signal amplitude, we
cannot compare the MSEs of the two estimators. Nevertheless,
we let

(90)

where and are the empirical standard deviation and
the mean of (over the 30 trials). A small is desirable
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Fig. 4. Amplitude estimates of a QR signal obtained via ML and Capon using
experimentally measured data.

for signal detection. Based on the 30 trials, we get
, which is smaller than .

B. Both Spatially and Temporally Colored Interference and
Noise

We now consider the case of spatially and temporally corre-
lated interference and noise. We generate a multichannel AR(2)
random process with the method in [20]. The autocorrelation
matrices are given by

(91)

and

(92)

where SNR, controls the spatial correlation, partly
decides the temporal correlation, and defines the spectral peak
location of the colored interference and noise in each channel.
The data sample number is . When we use the true au-
toregressive matrix in the ALS instead of the estimated one,
we refer to the method as the known-AR ML (KML) approach.
We include KML for comparison purposes only. Note that un-
like the temporally white interference and noise case discussed
previously, the performance of the and ALS estimators de-
pends on the temporal frequency characteristics of the known
signal. The following simulations are performed for both a con-
stant signal and a known BPSK signal.

First, we consider the relationship between the cost function
defined in (72) and . Because can be concentrated

out by using its estimate given in (75), is a function of
only. Consider the constant signal case. Fig. 5 shows the mesh
plot of versus the real and imaginary part of . We can see
that there is only one local maximum around the true value of

.
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For the constant signal case, our simulations show that the
spatial correlation coefficient is not closely related to the gap
between the performance of and ALS. However, the tem-
poral correlation coefficient and the position of the spectral
peak have an impact on the relative performance of the two
methods (see Figs. 6 and 7). We summarize our observations as
follows:

A: Both ALS and work better for large and/or
small .

B: ALS is slightly worse than for small and/or
large .

C: ALS is significantly better than for large and/or
small .

To explain these observations, we examine the signal as well
as the interference and noise term in the temporal frequency do-
main. The signal is a constant and, hence, has power at zero fre-
quency only. The power of the interference and noise is concen-
trated around , especially for small . For large , the signal
is separated from the interference and noise in the temporal fre-
quency domain, which benefits both methods. Similarly, smaller

means higher correlation in the temporal domain or more
peaky spectra in the temporal frequency domain. Hence, both
estimators perform better for this case when is away from
zero. This explains Observation A. Next, we note that a large

means low correlation in the temporal domain, and hence,
the interference and noise vector is approximately temporally
white. For small , the signal and the interference and noise
terms are not well separated in the temporal frequency domain.
KML behaves approximately as in either case. Since ALS
is inferior to KML, ALS is also slightly worse than . This
explains Observation B. Observation C was expected since ALS
estimates the temporal correlation of the interference and noise
and can suppress the interference and noise more efficiently in
this case in which the temporal correlation is significant.

Finally, we consider the known BPSK signal case. Because a
BPSK signal is wideband in the temporal frequency domain, the
impact of the interference spectral peak location on the perfor-
mance of the two methods is not as significant as in the constant

--30 --20 --10 0 10 20
10

 --4

10
--2

10
0

10
2

ρ
t
 = 0.5

SNR (dB)

M
S

E

M3L
ALS 
KML 

 --30  --20  --10 0 10 20
10

 ---6

10
 ---4

10
 ---2

10
0

10
2

ρ
t
 = 0.1

SNR (dB)

M
S

E

M3L
ALS 
KML 

 --30  --20  --10 0 10 20
10

 ---6

10
 ---4

10
 ---2

10
0

10
2

ρ
t
 = 0.05

SNR (dB)

M
S

E

M3L
ALS 
KML 

 --30  --20  --10 0 10 20
10

 --8

10
 ---6

10
 ---4

10
 ---2

10
0

ρ
t
 = 0.01

SNR (dB)

M
S

E

M3L
ALS 
KML 

Fig. 6. MSEs of ALS M L and KML estimates for a constant signal versus
SNR when ! = 1 and � = 0:6.
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Fig. 7. MSEs of ALS M L and KML estimates for a constant signal versus
SNR when � = 0:1 and � = 0:6.

signal case, which was verified in our simulations. However,
the temporal correlation parameter still controls the relative
performance of the two methods as shown in Fig. 8. We also see
from Fig. 8 that the ALS method significantly outperforms
(by over 10 dB in SNR) even for modestly temporally correlated
interference and noise ( ), although it performs simi-
larly to when the temporal correlation of the interference
and noise is weak ( ). Our simulations also suggest that
a known wideband signal makes suppressing temporally corre-
lated interference and noise easier than a narrowband one in the
sense that better estimates of can be obtained in the wideband
case.

VI. CONCLUSIONS

We have investigated the problem of amplitude estimation for
a signal with known waveform and steering vector in the pres-
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Fig. 8. MSEs of ALS M L and KML estimates for a known BPSK signal
versus SNR when ! = 0 and � = 0:6.

ence of interference and noise. We first assumed that the inter-
ference and noise vector was spatially colored but temporally
white. The ML and Capon methods as well as the closed-form
expressions of the expected values and MSEs of the two esti-
mators have been derived. We have shown that the ML estimate
is unbiased as well as asymptotically statistically efficient for
large data sample sets but, in addition, that it is not asymptot-
ically statistically efficient for high SNR. We have also shown
that the Capon method is biased downwards, but it is asymp-
totically unbiased and efficient for large data sample lengths.
The bias of the Capon estimate dominates its variance for high
SNR, which results in an error floor that does not decrease with
SNR. At low SNR, however, Capon can outperform ML as well
as the CRB for any unbiased estimator. We then considered a
more general scenario where the interference and noise vector
was both spatially and temporally colored. We have proposed an
ALS method based on the idea of cyclic optimization. We have
shown that in most cases, ALS outperforms the estimator,
which ignores the temporal correlation of the interference and
noise.

APPENDIX A
DERIVATION OF THE ML ESTIMATOR

The normalized log-likelihood function of is propor-
tional to

tr

(93)
where denotes the determinant of a matrix. Maximizing the
above cost function with respect to gives (see, e.g., [1])

(94)

Hence, the ML estimate of is obtained as follows:

(95)

(96)

(97)

(98)

(99)

where from (97) to (98), we have used the fact that
(see, e.g., [2]).

APPENDIX B
PROOF OF LEMMA 1

In the following, a subscript is used to indicate the dimension
of a matrix for the sake of clarity and is dropped whenever con-
venient. Consider an matrix

(100)

where , with denoting the transpose and

(101)

We can construct a unitary matrix

whose first column is chosen as
.

Let

(102)

and

(103)
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Inserting (100) into (102) gives

(104)

From (7), the first column of

(105)

and

(106)

where (or ) denotes the th column of (or ). Since
,

(107)

It follows from (6), (10), and (107) that

(108)

Hence, is a function of , whereas
.

We now show that are statistically independent of
each other. The cross correlation matrix of any two columns of

has the form

(109)

which is an matrix with the element

tr (110)

where tr denotes the trace, and denotes the th row of .
To obtain (110), we have used tr tr . Next, note
that

(111)

where is the element of the covariance matrix , and
is the Kronecker delta function defined in (68). Substituting

(111) into (110) yields

tr (112)

for (113)

Therefore

(114)

Furthermore, based on the circularly symmetric property of
, it is easy to show that for .

Since are Gaussian random vectors, they are
statistically independent of each other. Since is a function of

, and is a function of , we conclude that
and are statistically independent of each other.

APPENDIX C
CRAMÉR–RAO BOUND

Let be a vector containing all of the real-valued unknowns
in the data model in (1). Let . Then, the Fisher infor-
mation matrix (FIM) for is [2]

FIM tr

Re (115)

where denotes the th element of . Because and depend
on different elements of , FIM will be block diagonal with
respect to Re Im and the elements of , where
Re and Im denote the real and imaginary parts of a complex
variable, respectively. Hence, the first term of (115) does not
affect the CRB of , and

FIM Re Im

Re

(116)

(117)

Hence

CRB CRBRe CRBIm (118)

(119)

(120)

APPENDIX D
PROOF OF LEMMA 2

We know from (10) that

(121)
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Using the matrix inversion lemma on (121) gives

(122)

Substituting (122) into (8), we have

(123)

(124)

where is defined in (25) and by the Cauchy-Schwartz in-
equality . Hence, the lemma is proved.

APPENDIX E
PROOF OF LEMMA 3

We rewrite the in (7) as

(125)

where

(126)

and . Then, (25) can be reduced to

(127)

From (14) and (126), we get

(128)

According to the conditional expectation rule

(129)

Since and are statistically independent of each other, the
conditional probability density function is
an even function of . It follows from (127), (128), and (24) that

(130)

since is an odd function of . From (129), we
obtain

for (131)

Hence, the lemma is proved.

APPENDIX F
PROOF OF LEMMA 4

Let . Then, we have
. Let denote the singular value

decomposition of . Since is an orthogonal projection ma-
trix, the first ( rank ) diagonal elements of
are ones, and the rest are zeros. Hence, we get ,
where consists of the first columns of
the unitary matrix . Let denote the th row of . Then

(132)

Because as , where denotes
the th diagonal element of the defined in (67), we have

as . It follows from
(132) that the diagonal elements of are bounded. Since

is a positive semi-definite matrix, we have
. However, .

Hence, . Let
denote the eigenvalues of . Then

(133)

(134)

Since for large , (134) can be approximated as

(135)

[Note that if for , which is true for the
case of a known damped or undamped sinusoidal signal, (134)
and (135) are exactly equal.] Thus, minimizing is asymptot-
ically (for large ) equivalent to minimizing

tr (136)

The lemma is proved.
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