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The amplitude estimation of a signal which is known only up to an unknown scaling
factor, with interference and noise present, is of interest in several applications, including
using the emerging Quadrupole Resonance (QR) technology for detecting explosives. In
such applications a sensor array is often deployed for interference suppression. This the-
sis considers the complex amplitude estimation of a known waveform signal whose array
response is also known a priori. Two approaches (Capon and maximum likelihood (ML)
methods) were considered for signal amplitude estimation in the presence of temporally
white but spatially colored interference and noise. We derived closed-form expressions for
the expected values and mean-squared errors (MSEs) of the two estimators. A compar-
ative study showed that the ML estimate is unbiased while the Capon estimate is biased
downwards for finite data sample lengths. We found that both methods are asymptoti-
cally statistically efficient when the number of data samples is large, but not when the
signal-to-noise ratio (SNR) is high. We also considered a more general scenario where
interference and noise are both spatially and temporally correlated. We modeled the
interference and noise vector as a multichannel autoregressive (AR) random process. An

alternating least squares (ALS) method for parameter estimation is presented. We show

vii



that in most cases the ALS method is superior to the model-mismatched ML (M®L)

method which ignores the temporal correlation of the interference and noise.
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CHAPTER 1
INTRODUCTION

1.1 Thesis Motivation and Objectives
Quadrupole Resonance (QR) technology is an emerging technology for detecting
explosives [1, 2]. In that QR application, the 1*N in TNT, when stimulated by a sequence
of pulses, gives a characteristic response specific to the TNT. We refer to this response
(which consists of a sequence of echoes) as the QR signal. Each echo of the QR signal
is a back-to-back exponentially damped sinusoid separated by an interval T, from the
adjacent echoes; and with a damping rate determined by a parameter T, (Figure 1-1).

“HT:  The QR signal frequency, Tb,

The echo amplitude also damps exponentially as e
and 75 are all known quite accurately a priori; and the precise echo timing 7, is also
available in practice. Hence the QR signal is known a priori, to within a multiplicative
constant.

The main challenge of using QR technology for landmine detection is that the QR
signal is in the same frequency band as the AM/FM radio signals; and the QR signal
frequency cannot be changed. To suppress radio interferences, an antenna array can be
deployed with one of the sensors (the main antenna) receiving the QR signal besides
the interference and noise and the remaining sensors (reference antennas) receiving the
interference and noise only. Hence one of the elements of the array steering vector for the
QR signal is equal to one; and the remaining elements are zero. Thus in this application,
both temporal and spatial information are available a priori. One of the main tasks of
signal processing in QR technology for landmine detection is to estimate the amplitude
of QR signal with high accuracy. It is a mandatory step for signal detection. Our study
aimed to improve estimate accuracy by fully exploiting both the temporal information

and spatial information of the signal.
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Figure 1-1: The QR response of N in TNT

1.2 Related Previous Work

In practical applications, signal parameters oftern must be estimated in the pres-
ence of interference and noise by using array processing [3, 4]. It is well known that
temporal information about the signal can be used to effectively suppress interference
and noise; thus significantly improving the estimation accuracy. For example, Li and
Compton [5] and Li et al [6] studied the estimation of directions of arrival (DOAs) of
signals with known waveforms; and showed that significant improvements in accuracy,
interference suppression capability, and spatial resolution can be obtained. Through
Cramer-Rao bound (CRB) analysis, Zeira and Friedlander [7] studied the DOA estima-
tion of a parametric signal; and showed that exploiting temporal information about the
signal can improve the DOA estimation (except when no interference is present or when
the interferences are coherent with the signal). Other studies addressed the estimation
of parameters of known waveform signals [8, 9, 10, 11, 12]. But all of those studies
concentrated on estimating signal parameters by exploiting temporal information only.

1.3 Contributions
We considered the two most popular approaches, the Capon and the maximum

likelihood (ML) methods, that use both the temporal and spatial information to estimate



the signal amplitude in the presence of temporally white but spatially colored interference
and noise. Based on the results of Reed et al [13] and Kelly [14], we derived closed-
form expressions for the expected values and mean-squared errors (MSEs) of the two
estimators. A comparative study showed that the ML estimate is unbiased while the
Capon estimate is biased downwards for finite data sample lengths. We also show that
both methods approach the corresponding Cramer-Rao bound (CRB). That is, they are
asymptotically statistically efficient, when the number of data samples is large. However,
they are not asymptotically statistically efficient when the signal-to-noise ratio (SNR)
is high. We also considered a more general scenario where the interference and noise
vectors are both spatially and temporally correlated. We modeled the interference and
noise vector as a multichannel autoregressive (AR) random process. We proposed an
alternating least squares (ALS) method to tackle the amplitude-estimation problem in
this situation. We found that in most cases the ALS method is superior to the model-
mismatched ML (M3L) method that ignores the temporal correlation of the interference
and noise.
1.4 Summary of Chapters

The remainder of the paper is organized as follows. Chapter 2 formulates the prob-
lem of interest. The ML and Capon estimators are also given in that section. Chapter
3 gives the closed-form expressions of the expected values and MSEs of the ML and
Capon estimators; and compares their statistical properties. In Chapter 4, we propose
an alternating least squares (ALS) method to deal with the more general scenario of both
spatially and temporally correlated interference and noise. Our theoretical findings are
verified via numerical examples in Chapter 5. Finally, Chapter 6 gives the conclusions

of this thesis.



CHAPTER 2
PRELIMINARY WORK

The Capon and ML estimators are two widely used methods in array processing
[4]. In this chapter, we first set up the data model and then give the Capon and ML
estimators.
2.1 Data Model
We consider the problem of estimating the complex amplitude of a known waveform

signal in the presence of interference and noise:
X = aﬁsl + ey, (2.1)

where x; € CM*1 | = 1,2,--- L, denotes the Ith array output vector (with M being
the number of sensors and L being the number of snapshots), the array steering vector
a € CM*1 of the signal of interest is known and £ is the unknown complex amplitude of
the signal whose temporal waveform {s;}%, is known. First we model the interference
and noise term e; € CM*! as a zero-mean temporally white but spatially colored circularly
symmetric complex Gaussian random process with an unknown and arbitrary, but fixed,
spatial covariance matrix Q. We define the SNR by lumping the interference and noise

together in a “generalized noise” term:

M|B|?P,
gur = P, »
where tr(-) denotes the trace of a matrix and
1o~
P= IZ:; [s1] (2.3)

is the average power of the known waveform. Chapter 4 extends this thinking to a case

in which the interference and noise are both temporally and spatially correlated.



2.2 Capon Estimate
The Capon method, also known as the minimum variance distortionless response
(MVDR) beamformer, was proposed by Capon in 1969 [15] and has been widely used
in radar, sonar ([16, 17] and the references therein), speech signal processing [18] and
wireless communications [19, 20, 21, 22]. The basic idea of the Capon method is to form
a filter that lets the signal with steering vector a pass with unitary gain and minimizes

the overall array output power:

W Capon = argmin wRw subject to wfa=1, (2.4)

with (-)# denoting the conjugate transpose,

L
- 1
R= I ZZI: XX (2.5)

By using Lagranger multiplier, it is easy to show [4]

R 'a

_a 2.6
alfR1la (2.6)

WCapon =

Applying Capon filter in the spatial domain and matched filter in the temporal domain,

we get the Capon estimate
BC’apon = Wgaponi/Ps (27)
where
| L
X = ZZXIS;‘. (2.8)
1=1
and P is defined in (2.3). Combing (2.6) and (2.7) yields

. a’R'x

apon — A - 2.9
Cop P.afR-1a (2:9)



2.3 Maximum Likelihood Estimate
The ML method estimates the signal amplitude by maximizing the likelihood func-

tion of the random vectors {x;}/,. We show in Appendix A that

A alT 1x
= — = 2.10
where
——H
. XX
T=R - . 2.11
> (2.11)

Note that the only difference between the Capon and ML estimators is that the
matrix R in (2.9) is replaced by T in (2.10). We show in Chapter 3 that this seem-
ingly minor difference in fact leads to significant and interesting performance differences

between the two estimators.



CHAPTER 3
PERFORMANCE ANALYSIS OF MAXIMUM LIKELIHOOD AND CAPON

3.1 Introduction

In Chapter 2, we have set up the data model and proposed two methods, i.e., ML and
Capon, for signal amplitude estimation. In this Chapter, we will compare the statistical
performance of the two estimators thoroughly. In Section 3.2, we study the statistical
properties, including the expected value and mean-squared error of the ML estimate. In
Section 3.3, the statistical properties of the Capon estimate are investigated. Based on
the results in Section 3.3, we modify the Capon estimate to be unbiased and study the
mean-squared error of the unbiased Capon estimate in Section 3.4. Finally, we summarize
our findings in Section 3.5.

3.2 Performance Analysis of ML Estimator

We present below a statistical performance analysis of the ML estimator. We prove
that the ML estimator is unbiased. By deriving the MSE of the ML estimate and com-
paring it with the corresponding CRB, we show that the ML estimator is asymptotically
statistically efficient when the number of snapshots is large, but also that this is not the
case for high SNR.
3.2.1 Bias Analysis

The matrix T defined in (2.11) and the vector X in (2.8) are both functions of the
vectors {x;}Z,, which might suggest that they are correlated with each other. How-
ever, the lemma below somewhat surprisingly shows that they are in fact statistically
independent of each other.
Lemma 1. Under the assumption made on the data model in (2.1), the vector x and

the matriz T are statistically independent of each other.

Proof. See Appendix C. O
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Using this lemma and the conditional expectation rule, we can easily show that the

ML estimator is unbiased, i.e.,
£ [BML] =&t [55(|T [3MLH =&r[B] =B, (3.1)

where Eg 7 [-] denotes calculating the expected value with respect to X for a fixed T.
Lemma 1 and its proof also help in the performance analyses that follow.
3.2.2 Mean-Squared Error Analysis
Before calculating the MSE of the ML estimate, we first introduce the best possible
performance bound for any unbiased estimator of 53, i.e., the CRB. Appendix B shows

that the CRB has the following compact form:

1
Note that
B aHT_l)_C
ME P,afT-1a
_afT ity SF L (aBsist +ers))
N P,aHT 1la
_ L «
B + aHT 1% Zl:l elsl (3 3)
P,alT-la )
That is, the error of the ML estimate of 3 is
A alT- 1150 es;
PuL— B = PsaﬁlTﬁ; (3.4)
Hence the MSE of the ML estimate is
[ arT-1 (l e 5*) (l SFe 5*)H T 'a
MSE(ﬁA ) _ ¢ L Zai=1"%1=1 L Zai=1%1"1 (35)
Mez = (af'T-la)” P? '
- HT—l T—l
- 2T QT Al (3.6)
| (af'T1a)® LP,
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To obtain (3.6) from (3.5), we have used the facts that T and 3", e;s] are statistically

independent of each other (Lemma 1); and that {e;}/, are independently and identically

distributed.
Let
afT-1QT'aa’Q'a
¢= — Q (3.7)
(aH'T'a)
According to (3.6) and (3.2),
MSE(Buz)
E(] = . 3.8
As shown in the proof of Lemma 1
L
LT =) zz], (3.9)
1=2

where z; ~ N(0,Q) [ = 2,..., L, are independently and identically distributed. Hence

T has a complex Wishart distribution [23][13][14], i.e., T ~ CW(L — 1, M;Q/L). The

paper [13] has provided the probability density function (PDF) of p = 1:

¢
fp) = i _(s)ig)i M)!(1 —p) M2l M for 0< p< 1. (3.10)
Thus
ElC]=¢€[1/p = 1 _(s)hl)i M)!/o pl M1 — p)M2dp (3.11)
L-1
= T (3.12)

Therefore, it follows from (3.8) and (3.12) that

L-1

MSE(BML) = T — M

CRB(A). (3.13)

The above equation shows that (1) the ML estimate is asymptotically statistically
efficient for large snapshot lengths L, which was expected, and (2) the ML estimate is
not asymptotically statistically efficient for high SNR values, when L is fixed. In fact
we can infer from (3.13) that the MSE (in dB)-versus-SNR (in dB) line is parallel to the
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CRB-versus-SNR line and thus no “threshold effect” exits at low SNR. This theoretical
result is verified via a numerical example in Section 5.
3.3 Performance Analysis of Capon Estimator

We now establish the theoretical properties of the Capon estimator via an analysis
that parallels the one in Section 3.2. Our analysis relies on the results in [24, 13, 14].
3.3.1 Bias Analysis

We have proved that the ML estimate is unbiased. We investigate the bias of the
Capon estimate by studying the relationship between the two estimators.

Lemma 2. Under the assumptions made on the data model in (2.1), we have

BCapon = )\BML, A= 1 i ” <1, (3.14)
where
u= 1'% (xHTlx - aHT;;;X_IjaT_Ia) . (3.15)
and the equality holds iff x = aa for some constant c.
Proof. See Appendix D. O

Lemma 3. Under the assumption made on the data model in (2.1), any polynomial

function of the X defined in (8.14) is uncorrelated with the ML estimate, i.e.,
E[f N Bur - B)] =0,

where f(A) is an arbitrary polynomial.
Proof. See Appendix E. O

Based on Lemmas 2 and 3, we have

5[/30(1;007;] = g[)\BML]

= E[NB. (3.16)
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We derive below the PDF of A. Recall that € ~ N(0,Q/L) (cf (E.2)) and T ~

CW(L —1,M;Q/L). Following the techniques used in [13, 14], we define

E — L1/2Q71/2é,
and
C = LQ_1/2TQ_1/2.

Then & ~ N(0,I) and C ~ CW (L — 1, M;I) [23].
Inserting (3.17) and (3.18) into (E.3) yields

__¢H -1
u=g (C T Taicd

where

d=L'"?Q a.

We next introduce an M x M unitary matrix U such that

t =Ud =[||d||, 01xn—1]" -

C-ldd®cC!

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

Note that U¢ and UCUZ have the same PDFs as € and C, respectively. Then (3.19)

can be further simplified as

CttiC!
_ pH-1 H
e
We partition C, C ! and £ as
Cn Cp
C =
Co1 Cp
Cll 012
cl=
021 022
&1

€2

(3.22)

(3.23)

(3.24)

(3.25)
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where C1;, C*! and & are scalars, Cy = CE,C?' = [C*2)® and &, are (M —1) x 1 vectors,
and both Cyy and C?? are (M — 1) x (M — 1) matrices. Some useful relationships are as

follows [13, 14]:

C' = (C1y — 1905 C) ™ (3.26)
CH = —C5,' Oy CH (3.27)

C2 = (Cp— CplCuCis) ™ (3.28)
= Cyp + Crp Co1CraCl (3.29)

Ci1 — C15C55' Cor
To obtain (3.29) from (3.28), we have used the matrix inversion lemma.

Based on the partitions defined in (3.23), (3.24), and (3.25), the equation (3.22) can

be written as

&GO + R C? 2
o1t

= LOMEHECPL+EICHG +6C%8 — & — 6105, Cu PCH

u = ECWNE +ECY2, + 1O e + HOPE, —

= G076 — 0y CnCM 1503516 (3.30)
HO Oy CraColté
— gHo2 _52 29 021012055 &2 331
& = Ci1— 0120521021 ( )
= &'Cy'& (3.32)
Hence we have
1

A= ————— 3.33
1+ 521102_2152 ( )

where & ~ N(0,I) and Cyo ~ CW (L—1, M —1;1) and they are statistically independent
of each other. It can been shown ([14]) that the PDF of ) is

(L —1)!

M-2\L—-M
T L for 0=A<1 (3.34)

f) =

and the first and second moments of this distribution are

ED] = # (3.35)
£ = (L—M+1)(L—M+2)' (3.36)

L(L+1)
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Thus it follows from (3.35) and (3.16) that

L—-M+1

£ [ﬁACapon] = I

8. (3.37)

The above equation shows that the Capon estimate of 3 is biased downwards for a finite
data sample number L while it is asymptotically unbiased for large L. We can also see
that the biasedness of the Capon estimate is not related to SNR. We note that the result
in (3.37) is not completely new. The papers [25] and [26] have given results similar to
(3.37) when studying the convergence rate of the Capon beamformer, which was used to
estimate the signal power and waveform. However, our assumptions are different from
those in [25, 26], where the signals were assumed to be independently and identically
distributed complex Gaussian random vectors.

3.3.2 Mean-Squared Error Analysis

Based on Lemma 2, we can obtain the MSE(BC(WO”) as:

MSE(Boapon) = € |18~ Auz|?] (3.38)
= £[I= 8- ABuz - A (3.39)
= & [21Bur — 81| + € [(1- 27 18P, (3.40)

where to obtain (3.40) from (3.39), we have used Lemma 3 and (3.1).

Combing (3.4) and (E.2) gives

afT-'\/Pe

Buz — B = PaliT-1a (3.41)
Using the notations defined in (3.17)-(3.29), we can rewrite (3.41) as
Bur—B = % (3.42)
11 12
_ \/%én (3.43)
_ & — 012052152_ (3.44)

v/ LP,aQ'a
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Thus

212 _ B2 _— | §1— 01202_2152 ’

£ [/\ Barz — B ] - ¢ [irgos CRB(S) (3.45)
_ &) + 5502_2102101202_2152]

= & _ 0+ ei0,6) CRB(p) (3.46)

[ 1+87C056 ]
= & CRB 3.47
= E[N]CRB(pB) (3.48)
- #CRB(B). (3.49)

We got (3.47) from (3.46) using the fact that

ECy |0y [C21C12] = Cya. (3.50)

It follows from (3.35) and (3.36) that the second term of (3.40) is

2(L-M+1) (L-M+1)(L-M+2)

E[=N18 = |1- - + T+ 182 (3.51)
= A§+L 18I, (3.52)

Thus
MSE(Acapon) = *— T ORB(6) + Aﬁ et (3.53)

We can conclude from (3.53) that the Capon estimate is asymptotically statistically
efficient for a large data sample number L. In the finite L case, the MSE of the Capon
estimate may be smaller than the CRB for any unbiased estimator if the first term in
(3.53) dominates the second one. However, the MSE of the Capon estimate has an error

floor equal to 25,—|3/2 at high SNR.

L2+L

3.4 Performance Analysis of Unbiased Capon Estimator

We infer from equation (3.37) that the error floor of the MSE of the Capon estimate

M2
L2+L

M|3|2 is at least partly caused by the biasedness. Since the biasedness of Capon

is determined only by the dimensionality of the data set, we can get a modified Capon
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estimate !
- L N
IBCapon = L—M I 1ﬁCapon- (354)
whose expected value
E[Bapon] = B- (3.55)
Now we derive the MSE of the unbiased Capon estimate.
. . 2
MSE(/Bg’apon) = ¢ [ﬁg’apon - ﬁ :|
L L NN L-—M+1,|
=k [ foapon == F (3:56)
On the other hand,
. P L-M+1, M-1)|
MSE(BCapon) = £ BCapon - ﬂ - /B
L L
B S—B _L—M+1ﬂ2 M—1ﬂ2 (357
- Capon L L .
Thus
. L-—M+1
£ [ ﬁCapon - Tﬁ
X M-1_
= MSE(ﬂCapon) - 3 ﬁ (358)
L—M+1 M>-M ., |M-1_
= TCRB(ﬁ) + mw - ‘ I B (3.59)
L—-—M+1 M—1 9
= — B - . .
T [orBi) + 7] (3.60)
Inserting (3.60) into (3.56) yields
. L M-1
MSE(B =-——"—CRB 2, 61
S (5Capon) L—M+1CR (ﬂ)+(L—M+1)(L+]_)|5| (36)

(3.61) shows that error floor of the MSE of the unbiased Capon estimate still exists

though it is smaller than that of the biased one.

1 'We use subscript u to denote unbiased estimate
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It is interesting to compare the MSEs of the ML estimate and the unbiased Capon

estimate. Rewrite (3.13):

L -

MSE(Bur) = 7,

CRB(ﬂ) (3.62)

Unbiased Capon estimate can yield a smaller MSE than that of ML.

MSE (B8 pon) < MSE(Barz) (3.63)

& L_#MHCRB(B) s MM+_1)1(L+ 1)\5|2 < LL__AZCRB(B) (3.64)

& CRB> L MW (3.65)
However, for this case

MSE(Bupen) > 7 1|ﬂ\2 (3.66)

i.e., both methods fail in this situation. Hence, ML is always a preferable choice over
Capon.
3.5 Summary of the Capon and ML Statistical Properties
e The ML estimate is unbiased.
e The ML estimate is asymptotically statistically efficient for large number of snap-
shots.
e The ML estimate is not asymptotically statistically efficient for high SNR.
e The Capon estimate is biased downwards.
e The Capon estimate is asymptotically unbiased and statistically efficient for large
number of snapshots.
e The Capon estimate is neither asymptotically unbiased nor asymptotically statis-
tically efficient for high SNR.

The above properties are summarized in Table 3—1.

Table 3-1: M sensors, L snapshots, and signal amplitude 3

ML Capon Unbiased Capon
Mean S LIl g ]
L1 =M1
MSE #5;CRB “=/*CRB+ 4 L2+L T8 M+1CRB+ = M+1 (L+1 WQ




CHAPTER 4
EXTENSION TO MULTICHANNEL AR INTERFERENCE AND NOISE

The previous study assumed that the interference and noise term in (2.1) is spatially
colored but temporally white. However the interference and noise can be temporally
correlated [3, 27]. In this chapter, we model the interference and noise vector as a mul-
tichannel autoregressive (AR) random process and propose an alternating least squares
(ALS) method based on the cyclic optimization approach [28]. For discussion purposes,
we refer to the ML method in Section II that ignores the temporal correlation of the
interference and noise as the model-mismatched ML (M3L) method.

4.1 Data Model

Consider the data model:
x;=afs+v,, [=1,2,...,L, (4.1)

which is the same as the one in (2.1) except that the interference and noise term now

satisfies the next AR equation [29]

Az Yv =e, (4.2)
where 27! is the unit delay operator,
AN =T+Az " +Apz 2+ + AP, (4.3)
and
Eleey ] = Qdin, (4.4)

where 9, denotes the Kronecker delta function:
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Note that if the interference component in v; is a multichannel AR process while
the noise component in v; is white temporally, then the interference and noise term will
be a multichannel autoregressive and moving average (ARMA) random process, which
can still be approximated by a multichannel AR process. The SNR for the data model

in (4.1) is defined as

MP,|[?
NR = —— P
SNR tr(Ry) ’

(4.6)
where R, is the covariance matrix of {v;}.
4.2 The ALS Algorithm
Conditioned on the first p data vectors {x;}}_;, the log-likelihood function is pro-
portional to
L
Ci=—(L-p)n|Q|—tr |Q ! Z [AGz ) (x —aBs)] [A(z ) (x — aﬁsl)]H . (4.7)
I=p+1

Maximizing the above function with respect to Q gives [30]

. 1 3 -1 -1 H
Q= L—p 2, [A(z"")(x, — aBs)] [A(z")(x, — aBs)] " . (48)

After substituting (4.8) into (4.7), we need to minimize

L

Co=1 Y [AG)0a —as)] [A()(x — abs)]

l=p+1

# (4.9)
with respect to both 8 and A = [A;,A,,...,A,]. Hence the optimization problem
becomes more complicated than the one in Section 2. Here we propose an alternating
least squared (ALS) approach to solve this problem.

To begin with, we obtain an initial estimate /3’(0) of 8 by using the M3L method (cf
(2.10)). For a given estimate 3, let z; = x; — afs;. From (4.9), we get

L
A= argmAin Z [A(z_l)zl] [A(z_l)zl]H

l=p+1

(4.10)
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where
VAR
Az Nzy =2 +[A1...A)] : L7+ A,
Z_p
Note that
L
Z [A(z1)z] [A(z‘l)zl]H
l=p+1
L
= Z 21+ Ay [z + Agy]"
l=p+1
L L L L
SPIEEES P DRSSP E RSN O PP I
l=p+1 I=p+1 I=p+1 I=p+1
2 R, + R A + ARZ + AR,AY
A A N A A H A A A A
= (A+RuR, ) Ry (A+RyR, ) +R, - RyyR 'R, (4.11)
Hence the solution to (4.10) is
A = -R,Ry, (4.12)

which is recognized as the multichannel Prony estimate of A [29]. We assume that the
order p of the multichannel random process AR(p) is known. If p is unknown, it can be
estimated, for instance, by using the Generalized Akaike Information Criterion (GAIC)
(30].

For a given A, we obtain an improved estimate of 3 as follows:

L

> [AE) e -ags)] [AGT) - ass)] |

I=p+1

A

g = arg mﬁin

(4.13)

First, we consider the case of a known damped (or undamped) sinusoidal signal, i.e.,
5; = e~ 1wl with known frequency w, and damping factor c,.
Let

vy = A(z‘l)xl, l=p+1,...,L, b= A(Z_1)|z:e—as+jusa.
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Note that the length of the new data sequence y;, [ =p+1,..., L, is L —p instead of L.

The solution to the above problem is given by the ML estimator proposed in Section 2:

n baT y
B = 2y Y (4.14)
P,bAT b
where
L L
_ 1! w_oyyt o 1 .
Ty=— Dywi' = p F=p D (4.15)
I=p+1 I=p+1
and Py = g1 S/ P|si|? is the average power of the known waveform {s;}/ ;. The

ALS approach maximizes the likelihood function cyclically. We set A© =0 and obtain
B© = B,s.. We then iterate the next two steps until the solution converges, i.e., until

the two consecutive estimates B(i) and B(iﬂ) are sufficiently close:

AGH) = arg max F(x|A; 8D, {x,}7_)), (4.16)
which is given by (4.12) with 3 replaced by 8?, and

B+ = arg mﬂax f(x|B; A6+, {xi}-1), (4.17)

which is given by (4.14) with A replaced by AG+D),

Obviously the likelihood function never decreases in any iteration. In the simulations
reported in the next section we found that ALS converges in 2 or 3 iterations. Hence the
ALS estimator is computationally quite efficient.

Next, we consider the case of an arbitrary known waveform signal. Let

~

yi=A@E"x, a=A(zYas, l=p+1,...,L

YMx(L—p) = [Yp+1yp+2 ...yr] and GMX(L—;D) = [ap+1ap+2 ...ag).

Also let P be an orthogonal projection matrix defined as
P = G#(G")1, (4.18)

where (G#) is the Moore-Penrose pseudo-inverse of G [31], and let PL =1—P.
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Then (4.13) can be written concisely in a matrix form:

B = agmin|(Y - G)(Y - 4G)”|

= argmin (Y = BG)(P +P)(Y — BG)"| (4.19)
= arg mﬂin |(YP — BG)(YP — BG)" + YPY¥| (4.20)
= arg min |(YP — BG)(YP — BG)" + T,| (4.21)
= arg mﬁin |(YP — 8G)(YP — 8G)"T,' +1||T,/, (4.22)

Note that minimizing the cost function in (4.22) requires a two-dimensional search
(since S is complex-valued). To avoid the search, we use Lemma 4 to obtain an approx-
imate estimate of f3.

Lemma 4. For a large data sample number L, minimizing

Fy = |(YP - BG)(YP - 8G)"T,' +1, (4.23)
15 asymptotically equivalent to minimizing

Fy=tr [(YP - 8G)"T, ' (YP - 8G)]. (4.24)

Proof. See Appendix F. O

It follows from (4.24) that
Fy =B tr(GPT,'G) — tr(GT,'Y) " — Btr(Y'T,'G) + tr(PY"T,'Y). (4.25)

Minimizing F; with respect to 3 yields

tr(GYT, 1Y)

A%— 4.2
PR (@it Gy (4.26)

where we remind the reader that T, = YP+Y . Because (4.26) is only an approximate
solution to (4.22) in this more general case, ALS is not theoretically guaranteed to yield
a more accurate solution than the M3L method. However, in our numerical examples,

ALS outperforms M3L in most cases even for modest data sample lengths. To avoid any
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“divergence problem” in this case in which ALS is no longer an iterative maximizer, we

simply pre-impose the number of iterations to be 3.



CHAPTER 5
NUMERICAL AND EXPERIMENTAL EXAMPLES

We provide both simulated-data and real-life data examples to demonstrate the
performance the ML and Capon estimates. In all the simulated-data examples, we
consider the case where the steering vector is given by a = [1 0 0 0]T and 8 = 1. This
corresponds to the case where the first of the M = 4 sensors receives the signal besides
the interference and noise while the other three sensors receive the interference and noise
only. In all but the last example, we assume that s;, =1, =1,2,---, L, for simplicity.
We obtain the empirical MSEs of the estimates by using 500 Monte-Carlo trials.

5.1 Spatially Colored but Temporally White Interference and Noise

We first consider simulated-data examples. We assume that the interference and
noise term is a spatially colored but temporally white Gaussian random vector with the

spatial covariance matrix Q given by

where p = ﬁ

Figure 5-1 shows the MSEs of ML estimates and the biased and the unbiased Capon
(cf. (3.54)) estimates obtained from both theoretical predictions (based on (3.13) (3.53))
and (3.61) and Monte Carlo trials besides the corresponding CRB as a function of L when
the SNR is 10 dB. As expected, both the ML and the two Capon estimates approach the
corresponding CRB as L increases since both methods are asymptotically statistically
efficient for large L. It is also shown that the convergence rate of the ML estimate is much
faster than the two Capon estimates and the unbiased Capon estimate is superior to the
biased Capon. Figure 5-2 gives the MSEs of the Capon and ML estimates besides the
corresponding CRB as a function of SNR when L = 10. The unbiased Capon estimate

has a lower error floor than the biased one. Note also that the biased Capon estimate

23
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can have lower MSE than the unbiased ML estimate at low SNR, (yet this happens at
MSE values that are too large to be of practical value). As predicted by our theoretical
analyses, for a fixed data length L, MSE(BAML) is parallel to the CRB and no “threshold
effect” occurs. Furthermore, the ML estimate is not asymptotically statistically efficient
for high SNR.

Next we present a real-life data example based on experimentally measured QR
data. The main antenna of a QR landmine detector receives a QR signal which consists
of 40 echoes besides AM/FM interferences. We apply a fast Fourier transform (FFT) to
each echo and only pick the value corresponding to the echo frequency w,. In this way, we
compress the QR signal into a signal with known waveform s; = e 7</T2 | =1, ..., 40.
Next the data received at the 3 reference antennas is segmented into 40 blocks which
occupy the same period of time as the 40 echoes. We apply FF'T to each block and pick 3
values corresponding to w, and the two adjacent frequency bins. Doing so, we get a virtual
array with one main antenna and 9 reference antennas, i.e.,a = [1 0y,9]7. Although the
aforementioned pre-processing method might seem somewhat ad hoc, it worked well in
our experiments. Figure 5-3 shows the ML and th biased Capon estimates of the QR
signal amplitude in 30 experimental trials. Since we do not know the true value of the
signal amplitude, we cannot compare the MSEs of the two estimators. Nevertheless we

let

A

5 = o1l
€(B) = £17] (5.2)

where ¢[] and &[] are the empirical standard deviation and the mean of 3 (over the
30 trials). A small ¢[3] is desirable for signal detection. Based on the 30 trials, we get
e(Brr1) = 0.1746 which is smaller than €(Bgapon) = 0.2039. We don’t need to differentiate
the biased and unbiased Capon estimate for the quantity e since it is invariant to scaling.
5.2 Both Spatially and Temporally Colored Interference and Noise
We now consider the case of spatially and temporally correlated interference and

noise. We generate a multichannel AR(2) random process with the method in [27]. The
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autocorrelation matrices are given by
Ry (D]mn = E[vevily] = pp™ ™ exp{—pil® + j(m — n+ lw}, (5-3)

and

R.() =R, (=), 1=0,1,...,p, (5.4)

where p = m, ps controls the spatial correlation, p; partly decides the temporal
correlation, and w defines the spectral peak location of the colored interference and
noise in each channel. The data sample number is L = 50. When we use the true
autoregressive matrix A in the ALS instead of the estimated one, we refer to the method
as the known-AR ML (KML) approach. We include KML for comparison purposes only.
Note that unlike the temporally white interference and noise case discussed previously,
the performance of the M3L and ALS estimators depends on the temporal frequency
characteristics of the known signal. The simulations are performed for both a constant
signal and a known BPSK signal.

First, we consider the relationship between the cost function Cs defined in (4.9) and
. Because A(z7') can be concentrated out by using its estimate given in (4.12), C, is a
function of S only. Consider the constant signal case. Figure 5-4 shows the mesh plot of
—C5 versus the real and imaginary part of /3’ We can see that only one local maximum
exits around the true value of g = 1.

For the constant signal case, our simulations show that the spatial correlation co-
efficient p, is not closely related to the gap between the performance of M3L and ALS.
However, the temporal correlation coefficient p; and the position of the spectral peak w
have an impact on the relative performance of the two methods (Figures 5-5 and 5-6).
We summarize our observations as follows:

A: Both ALS and M3L work better for large w and/or small p,
B: ALS is slightly worse than M3L for small w and/or large p,

C: ALS is significantly better than M3L for large w and/or small p;.
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To explain these observations, we examine the signal besides the interference and noise
term in the temporal frequency domain. The signal is a constant and hence has power
at zero frequency only. The power of the interference and noise is concentrated around
w especially for small p,. For large w, the signal is separated from the interference
and noise in the temporal frequency domain, which benefits both methods. Similarly,
smaller p, means higher correlation in the temporal domain or more peaky spectra in
the temporal frequency domain. Hence both estimators perform better for this case
when w is away from zero. This explains Observation A. Next, we note that a large
p: means low correlation in the temporal domain and hence the interference and noise
vector is approximately temporally white. For small w, the signal and the interference
and noise terms are not well separated in the temporal frequency domain. KML behaves
approximately as M3L in either case. Since ALS is inferior to KML, ALS is also slightly
worse than M3L. This explains Observation B. Observation C was expected since ALS
estimates the temporal correlation of the interference and noise and can suppress the
interference and noise more efficiently in this case in which the temporal correlation is
significant.

Finally, we consider the known BPSK signal case. Because a BPSK signal is wide-
band in the temporal frequency domain, the impact of the interference spectral peak
location w on the performance of the two methods is not as significant as in the constant
signal case, which was verified in our simulations. However, the temporal correlation
parameter p; still controls the relative performance of the two methods as shown in Fig-
ure 5-7. We also see from Figure 5-7 that the ALS method significantly outperforms
M3L (by over 10 dB in SNR) even for modestly temporally correlated interference and
noise (p; = 0.1) although it performs similarly to M3L when the temporal correlation of
the interference and noise is weak (p; = 2). Our simulations also suggest that a known
wideband signal makes suppressing temporally correlated interference and noise easier
than a narrowband one, in the sense that better estimates of 8 can be obtained in the

wideband case.
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CHAPTER 6
CONCLUSIONS

We have investigated the problem of amplitude estimation for a signal with known
waveform and steering vector in the presence of interference and noise. We first assumed
that the interference and noise vector was spatially colored but temporally white. The
ML and Capon methods and the closed-form expressions of the expected values and
MSEs of the two estimators have been derived. We have shown that the ML estimate
is unbiased and asymptotically statistically efficient for large data sample sets although
it is not asymptotically statistically efficient for high SNR. We have also shown that the
Capon method is biased downwards but it is asymptotically unbiased and efficient for
large data sample lengths. The bias of the Capon estimate dominates its variance for
high SNR, which results in an mean-squared error floor in high SNR area. At low SNR,
however, Capon can even outperform ML and the CRB for any unbiased estimator. We
then considered a more general scenario where the interference and noise vector was both
spatially and temporally colored. We have proposed an ALS method based on the idea
of cyclic optimization. We have shown that in most cases ALS outperforms the M3L

estimator which ignores the temporal correlation of the interference and noise.
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APPENDIX A
DERIVATION OF THE ML ESTIMATOR

The normalized log-likelihood function of {x;}~, is proportional to

L

C=—n|Q| —tr Ql% S (x — afsy) (xi — aBs)” (A1)

=1
where | - | denotes the determinant of a matrix. Maximizing the above cost function with
respect to Q gives [3]

1 L

QML = E Z(Xl — aﬂsl)(xl — aﬂsl)H. (AQ)

=1

Hence the ML estimate of 5 is obtained as follows:

L
Bur = argmﬂin %Z(Xl —aps;)(x; —aBs)? (A.3)
1 v 1 o
_ : H | — * H
= argmin |- lzzl XX (L lzzlxlsl> (aB)
1 & ! 1 &
—(ap) (z > XLST) + aﬂﬁHaHZ > sl
I=1 1=1
£ argmin R — x(a8)" — (aB)x" + (a8)P,(a8)"
__ _ _ \H
= argmin R — X;SH + (a,@\/E — %) (aﬁ\/E — \/LE) (A.4)
_ _\H
= argmﬂin IT| [T+ T 1 (aﬁ\/FS - %) <aﬁ\/FS - %) (A.5)
_ H _
= argmﬂin (aﬁ\/E - \/%) T (aﬁ\/E - %) (A.6)
alT 'x
~ PafT 'a A7

where from (A.5) to (A.6), we have used the fact that I+ AB| = I+ BA]| [4].
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APPENDIX B
CRAMER-RAO BOUND

Let  be a vector containing all of the real-valued unknowns in the data model in

(2.1). Let u; = afs;. Then the Fisher’s Information Matrix (FIM) for n is [4]

(5) @ (5)
8772 (977]'

where 7; denotes the ith element of . Because p;, and Q depend on different elements of

,  (B1)

_ 1 Q 1
FIM;;(n) = Ltr (Q an am>+2R Z

n, FIM(n) will be block diagonal with respect to [ Re{g} Im{g} | and the elements
of Q, where Re and Im denote the real and imaginary parts of a complex variable,

respectively. Hence the first term of (B.1) does not affect the CRB of § and

a’Q'aYl [si?  jaQlay [si[?

FIM([ Re{8} Im{8}]") = 2Re
—ja"Q tay L [si* a"Qa Yy, [

aflQtaY "  |si? 0
— 9 2ics I (B.2)
0 afQ~!a Zlel | 5|2
Hence
CRBg = CRBgeis} + CRBm{s) (B.3)
1
= i . (B.4)
afQ™'ay ., [si]
1
= —. B.
afQlalLP, (B.5)
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APPENDIX C
PROOF OF LEMMA 1

In the following, a subscript is used to indicate the dimension of a matrix for the

sake of clarity and is dropped whenever convenient. Consider an M x L matrix

Xprxr = [X1,%, -, xg] = afs” + By, (C.1)
where s = [sq,...,s]" with ()7 denoting the transpose and
E:[el,eQ,...,eL]. (02)

We can construct a unitary matrix

Upxr = [ug,uy, ..., ug]
whose first column u; is chosen as u; = \/%Ps [51,80,...,50]" .
Let
Yuxr = XuxrUrxr (03)
and
ZM><L = EMXLULXL' (04)
Inserting (C.1) into (C.3) gives
Y = [\/LPsﬂa, 0Mx<L_1)} 47 (C.5)
From (2.8), the first column of Y
L
y1 =V LPpa+z = P (C.6)
and
yl:Zl,ZZQ,...,L, (C7)
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where y; (or z;) denotes the /th column of Y (or Z). Since UUH =1,
YY? = XUU#X? = XX*. (C.8)

It follows from (2.5)(2.11) and(C.8) that

L
LT = XX" - —xx"
PSXX
= YY" - ylyf{
L
= )yl
=2
L
= Zzlle. (C.9)
=2
Hence T is a function of z;,{ = 2,3,..., L, while x = P;Sa+ {/Zz;.

We now show that {z;}, are statistically independent of each other. The cross

correlation matrix of any two columns of Z has the form
B = £[z;z]'| = £[Euu]EY], (C.10)
which is an M x M matrix with the (&, l)th element

[B]kl = 5[ékHuZujHél]

= tr{[uu]E[6,68]} (C.11)

where tr(-) denotes the trace and & denotes the kth row of E. To obtain (C.11), we

have used tr(AB) = tr(BA). Next, note that

[Elee)]],. = Elejer]

ij

= qkldij, (C.12)
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where gy, is the (k, )" element of the covariance matrix Q and §;; is the Kronecker delta

function defined in (4.5). Substituting (C.12) into (C.11) yields

Bl = tr{[uiuf]leIL} (C.13)
= qkléij, for k,l:1,2,...,M. (014)

Therefore,
Elzizi'] = Q5. (C.15)

Furthermore, based on the circularly symmetric property of {e;}~, it is easy to show
that E[Ziz;‘-r] =0for1<14,57 < L. Since zq, Z, . . .,z are Gaussian random vectors, they
are statistically independent of each other. Since T is a function of z;,/ =2,..., L, and
X is a function of z;, we conclude that T and X are statistically independent of each

other.



APPENDIX D
PROOF OF LEMMA 2

We know from (2.11) that

Using the matrix inversion lemma on (D.1) gives

PP - i
N P, +xHT-1x’

Substituting (D.2) into (2.9), we have

H—-1g  afT-'zxfT-'%
a’T 'x P+xHT-1x%
H -1 _ alT '1%xHT-1a
Ps(a T 'a P+xHT-1x )
1— xHT-1x
— B P,+xHT-1x%
MLl _ aHT-1gxHT-1la
aHT-la(P,+xHT1x)

ﬂ Capon

1

BML __
14 ()—CHT—I)—( _ w) /P,

aHT-1a
1

1+u’

= BuL

(D.2)

(D.3)

(D.4)

where u is defined in (3.15) and by the Cauchy-Schwartz inequality, v > 0. Hence the

lemma is proved.
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APPENDIX E
PROOF OF LEMMA 3

We rewrite the x in (2.8) as

% = P,ag + /P8,

where

L
_ 1 .
€= E e;s;,
Lv/P, = e

and € ~ N(0,Q/L). Then (3.15) can be reduced to

T laaT!
_ zH -1 _
u=e (T - m) e
From (3.4) and (E.2), we get
A allT-le
e = 0= Jpant ta

According to the conditional expectation rule,

e (s )] =2 feun o (s 9]}

(E.1)

(E.2)

(E.3)

(E.5)

Since e and T are statistically independent of each other, the conditional probability

density function fsr(e|T) = fs(e) is an even function of e. It follows from (E.3), (E.4)

and (3.14) that
Eom [\ (Buur - B)] =0,

since \" <BML — B) is an odd function of €. From (E.5), we obtain

5[)\" (BML—/J’” —0, for n=0,1,2,---.

Hence the lemma is proved.
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APPENDIX F
PROOF OF LEMMA 4

Let E = Y —3G. Then we have (YP—8G)(YP—3G)” = EPEY. Let P = VI'V#
denote the singular value decomposition of P. Since P is an orthogonal projection matrix,
the first 7 (r = rank(P) < M) diagonal elements of I" are ones and rest are zeros. Hence
we get P = V., V# where V = [v|,Vy,...,V,] consists of the first r columns of the

unitary matrix V. Let & denote the ith row of E. Then
[EPEH} =Y v (F.1)
k43 le

Because £{&;e"} — ¢;;1;, as L — oo, where ¢;; denotes the ith diagonal element of the Q
defined in (4.4), we have £{|&”v;|*} — gl|v;||* = ¢ as L — oo. It follows from (F.1)
that the diagonal elements of EPE are bounded. Since EPEX is a positive semi-definite
matrix, we have EPE? = O(1). However, T, = EP'E# = EE? — EPE? = O(L).
Hence C = (YP — 8G)(YP — G)" T, = O(1). Let {\n}}l_; denote the eigenvalues
of C. Then

F, = |(YP-BG)(YP-8G) T, +1 (F.2)

= TIM_ (14 \p). (F.3)

Since \,, < 1 for large L, (F.3) can be approximated as

M
Fiml+ ) A (F.4)

m=1
(Note that if A\, = 0 for m = 2,3,--- , M, which is true for the case of a known damped
or undamped sinusoidal signal, (F.3) and (F.4) are exactly equal.) Thus minimizing F}

is asymptotically (for large L) equivalent to minimizing
Fy =tr [(YP - 8G) T, (YP - G)]. (F.5)
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Signal detection and estimation is a mandatory task in many military and civil
applications, including using the emerging Quadrupole Resonance (QR) technology for
explosive detection. It is found that the TNT molecules in any explosive can emit a
characteristic response (we refer to it as QR signal) if stimulated by a specific stimulus.
The main challege is that the QR signal falls in the AM/FM frequency bands. Hence we
need to suppress the strong interferences from the nearby AM/FM radio stations before
implementing signal estimation and detection. In this paper, we use array processing
technique to suppress the interference. We come up two methods, ML and Capon, and
study thoroughly the performance of the two methods. It has been shown that the new
method based on the results of this thesis can signficantly improve the explosive detection

performance over the method used in the current QR system.



