EEL 3135 Quiz 2

Name: ___________________________ UFID: ___________________________

\[x[n] = A \cos(\omega_0 n + \phi) \]

With: \(A = 3 \), \(\omega_0 = 0.7 \pi \), \(\phi = \frac{3\pi}{4} \), \(f_s = 1,000 \text{ samples/second} \)

\(x[n] \) was obtained by sampling a continuous-time signal: \(x(t) = A \cos(2\pi f t + \phi) \) at a rate of 1,000 samples/second.

1. Determine **THREE DIFFERENT** continuous-time signals \([x(t)] \) that could have produced \(x[n] \). Each signal must have a frequency **LESS** than 1,500 Hz. Write out the equation for each of the signals.

\[
X[n] = 3 \cos \left(\frac{7\pi}{2} n + \frac{3\pi}{4} \right)
\]

\[
X_1(t) = 3 \cos \left(2\pi \left(\frac{3}{5} \right) t + \frac{3\pi}{4} \right)
\]

\[
X_2(t) = 3 \cos \left(2\pi \left(\frac{13}{5} \right) t + \frac{3\pi}{4} \right)
\]

\[
X_3(t) = 3 \cos \left(2\pi \left(\frac{6}{5} \right) t - \frac{3\pi}{4} \right)
\]

2. For **EACH** of the three signals found above \([x(t)] \) state the minimum sampling frequency that must be used to avoid aliasing.

\(X_1(t) \) must be sampled faster than 2700 samp/sec

\(X_2(t) \) must be sampled faster than 1300 samp/sec

\(X_3(t) \) must be sampled faster than 700 samp/sec
EEL 3135 Quiz 2

Name: _____________________________ UFID: _____________________________

\[x[n] = A \cos(\omega_0 n + \phi) \]

With: \(A = 5 \), \(\omega_0 = 0.5\pi \), \(\phi = \frac{\pi}{4} \), \(f_s = 1000 \text{ samples/second} \)

\(x[n] \) was obtained by sampling a continuous-time signal: \(x(t) = A \cos(2\pi f t + \phi) \) at a rate of 1,000 samples/second.

1. Determine THREE DIFFERENT continuous-time signals \([x(t)] \) that could have produced \(x[n] \). Each signal must have a frequency LESS than 1,500 Hz. Write out the equation for each of the signals.

\[x[n] = 5 \cos \left(0.5\pi n + \frac{\pi}{4} \right) \]

\(x_1(t) = 5 \cos \left(2\pi \left(\frac{250}{1000} \right) t + \frac{\pi}{4} \right) \]

\(x_2(t) = 5 \cos \left(2\pi \left(\frac{1250}{1000} \right) t + \frac{\pi}{4} \right) \]

\(x_3(t) = 5 \cos \left(2\pi \left(\frac{1750}{1000} \right) t - \frac{\pi}{4} \right) \]

2. For EACH of the three signals found above \([x(t)]\) state the minimum sampling frequency that must be used to avoid aliasing.

\(x_1(t) \) must be sampled above \(500 \text{ samples/sec} \)

\(x_2(t) \) must be sampled above \(2500 \text{ samples/sec} \)

\(x_3(t) \) must be sampled above \(1500 \text{ samples/sec} \)
EEL 3135 Quiz 2

Name: ___________________________ UFID: ___________________________

\[x[n] = A \cos(\omega_0 n + \phi) \]

With: \(A = 7 \), \(\omega_0 = 0.3\pi \), \(\phi = \frac{\pi}{6} \), \(f_s = 1,000 \) samples/second

\(x[n] \) was obtained by sampling a continuous-time signal: \(x(t) = A \cos(2\pi ft + \phi) \) at a rate of 1,000 samples/second.

1. Determine THREE DIFFERENT continuous-time signals \(x(t) \) that could have produced \(x[n] \). Each signal must have a frequency LESS than 1,500 Hz. Write out the equation for each of the signals.

\[x[n] = 7 \cos \left(\frac{3\pi n}{6} + \frac{\pi}{6} \right) \]

\[x_1(t) = 7 \cos \left(\frac{2\pi (150)}{f_s} t + \frac{\pi}{6} \right) + 1 \]

\[x_2(t) = 7 \cos \left(\frac{2\pi (1150)}{f_s} t + \frac{\pi}{6} \right) + 1 \]

\[x_3(t) = 7 \cos \left(\frac{2\pi (850)}{f_s} t - \frac{\pi}{6} \right) + 1 \]

\[\frac{3\pi}{6} = \frac{2\pi f_0}{f_s} \]

\[f_1 = 150 \text{ Hz} \]

\[\frac{(2\pi + 3\pi)n}{f_s} = \frac{2\pi f_2}{f_s} \]

\[f_2 = 1150 \text{ Hz} \]

\[\frac{(2\pi - 3\pi)n}{f_s} = \frac{2\pi f_3}{f_s} \]

\[f_3 = 850 \text{ Hz} \]

\(\text{Since we negated } \omega_0, \text{ we must negate the phase so } \phi_3 = -\frac{\pi}{6} \)

2. For EACH of the three signals found above \(x(t) \) state the minimum sampling frequency that must be used to avoid aliasing.

\(x_1(t) \) must be sampled above \(300 \) samples/sec.

\(x_2(t) \) must be sampled above \(2300 \) samples/sec.

\(x_3(t) \) must be sampled above \(1900 \) samples/sec.