1. Prove that for square matrices A and B, $|AB| = |A||B|$, where $|.|$ denotes the determinant of a matrix.

2. Prove that $|A| = \frac{1}{|A^\dagger|}$, where A is a square matrix.

4. Let A and B be square matrices. Prove that $\begin{vmatrix} [A \ 0] \\ 0 \ B \end{vmatrix} = |A||B|$.

5. For a Hermitian matrix $A = A^*$, prove
 (i) All eigenvalues of A are real valued.
 (ii) The matrix whose columns are the eigenvectors of A is unitary.